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Periodic signals

A continuous-time signal 𝑥(𝑡) is periodic, when there is a

positive non-zero value 𝑇 for which:

𝑥 𝑡 + 𝑇 = 𝑥 𝑡 , for all 𝑡. 

• 𝑇 is referred to as the period of the signal.

• Frequency: 𝐹 =
1

𝑇
.   It is measured in Hertz (Hz). 

• Angular frequency: 𝛺 = 2𝜋𝐹 =
2𝜋

𝑇
. 



Trigonometric signals (sine, cosine):

𝑥 𝑡 = 𝐴cos 𝛺𝑡 + 𝜑 =
𝐴

2
𝑒𝑖 𝛺𝑡+𝜑 + 𝑒−𝑖 𝛺𝑡+𝜑 .

𝑥 𝑡 = 𝐴sin 𝛺𝑡 + 𝜑 =
𝐴

2𝑖
𝑒𝑖 𝛺𝑡+𝜑 − 𝑒−𝑖 𝛺𝑡+𝜑 .

• 𝐴: amplitude,

• 𝛺: angular frequency, 𝜑: phase

• The period of the sinusoid is 𝑇 =
2𝜋

𝛺
.

Periodic signals



Complex exponential signal:

𝑥 𝑡 = ⅇ𝑠𝑡 = 𝑒(𝜎+𝑖𝛺)𝑡 = 𝑒𝜎𝑡 (cos𝛺𝑡 + 𝑖 sin𝛺𝑡).

Special case:

𝑥 𝑡 = 𝐴𝑒𝑖𝛺𝑡 = 𝐴cos𝛺𝑡 + 𝑖 𝐴sin𝛺𝑡.

Periodic signals
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Fourier Transform

Fourier transform (FT) of signal 𝑥 𝑡 is a function

transformation 𝑋 𝛺 :

𝑋 𝛺 ≜ ℱ 𝑥 𝑡 = න
−∞

∞

𝑥 𝑡 𝑒−𝑖𝛺𝑡𝑑𝑡 .

Inverse Fourier transform of 𝑋 𝛺 is defined as:

𝑥 𝑡 ≜ ℱ−1 𝑋 𝛺 =
1

2𝜋
න
−∞

∞

𝑋 𝛺 𝑒𝑖𝛺𝑡𝑑𝛺 .



Fourier Transform

• Fourier transform pair is denoted by: 𝑥 𝑡 ↔ 𝑋 𝛺 .

• Fourier transform essentially decomposes an 1D signal 𝑥 𝑡
into a sum of periodic complex exponential functions,

resulting in signal spectrum (frequency content) 𝑋 𝛺 at

frequency 𝛺.



Fourier Transform

The Fourier transform 𝑋 𝛺 is, in general, a complex one:

𝑋 𝛺 = 𝑅 𝛺 + 𝑖𝐼 𝛺 = 𝑋 𝛺 𝑒𝑖𝜑 𝛺 .

• 𝑋 𝛺 is referred as the (Fourier) spectrum of 𝑥 𝑡 .

• 𝑋 𝛺 is the spectrum  magnitude.

• 𝜑 𝛺 is the spectrum phase.



Fourier Transform

• Band-limited signals (or low-pass signals) are those 

satisfying:

𝑋 𝛺 = 0, 𝛺 > 𝛺𝑚𝑎𝑥.

• 𝛺𝑚𝑎𝑥 is the band-limited signal bandwidth.



Fourier Transform
FT 𝑋 𝛺 is given by:

𝑋 𝛺 = න
−∞

∞

𝑥 𝑡 𝑒−𝑖𝛺𝑡𝑑𝑡 = න
−∞

∞

𝑥 𝑡 cos 𝛺𝑡 − 𝑖sin 𝛺𝑡 𝑑𝑡.

If 𝑥 𝑡 is a real-valued signal, then:

𝑅 𝛺 = න
−∞

∞

𝑥 𝑡 cos 𝛺𝑡 𝑑𝑡 .

𝐼 𝛺 = −න
−∞

∞

𝑥 𝑡 sin 𝛺𝑡 𝑑𝑡.



Fourier Transform

Consequently, if 𝑥 𝑡 is a real function:

• 𝑅 𝛺 , 𝐼 𝛺 are even/odd functions, respectively:

𝑅 −𝛺 = 𝑅 𝛺 , 𝐼 −𝛺 = −𝐼 𝛺 .

• FT satisfies the complex conjugation property:

𝑋 −𝛺 = 𝑋∗ 𝛺 , 

• ∗ denotes complex conjugation.



Fourier Transform
Dirichlet conditions are sufficient for FT 𝑋 𝛺 convergence:

1. 𝑥 𝑡 is absolutely integrable, as defined by:

න
−∞

∞

𝑥 𝑡 𝑑𝑡 < ∞.

2. 𝑥 𝑡 has bounded variation within any finite interval [𝑎, 𝑏].

3. 𝑥 𝑡 is a continuous function or contains finite number of

finite discontinuities in any given finite interval.

If conditions 2,3 are met, 𝑥(𝑡) is a piecewise smooth

function.



Fourier Transform

The square window function:

𝑥 𝑡 = ቊ
1, 𝑡 < 𝑇/2

0, 𝑡 > 𝑇/2

satisfies Dirichlet conditions. Its FT is a real sync

function:

𝑋 𝛺 = න
−∞

∞

𝑥 𝑡 𝑒−𝑖𝛺t𝑑𝑡 = න
−𝑇/2

𝑇/2

𝑒−𝑖𝛺t𝑑𝑡 =
2

𝛺
sin

𝛺𝑇

2

= 𝑇
sin

𝛺𝑇
2

𝛺𝑇/2
.



Fourier and Laplace 

Transform

Fourier transform:

𝑋 𝛺 = න
−∞

∞

𝑥 𝑡 𝑒−𝑖𝛺𝑡𝑑𝑡,

is a special case of bilateral Laplace transform (LT): 

𝑋 𝑠 = න
−∞

∞

𝑥 𝑡 𝑒−𝑠𝑡𝑑𝑡 ,

for 𝑠 = 𝑖𝛺.



Fourier and Laplace 

Transform

If 𝑠 = 𝜎 + 𝑖𝛺, Laplace transform becomes:

𝑋 𝜎 + 𝑖𝛺 = න
−∞

∞

𝑥 𝑡 𝑒− 𝜎+𝑖𝛺 𝑡𝑑𝑡 = න
−∞

∞

𝑥 𝑡 𝑒−𝜎𝑡 𝑒−𝑖𝛺𝑡𝑑𝑡,

and:

𝑋 𝜎 + 𝑖𝛺 = ℱ 𝑥 𝑡 𝑒−𝜎𝑡 .

• The bilateral Laplace transform of 𝑥 𝑡 can be interpreted as

the Fourier transform of signal 𝑥 𝑡 𝑒−𝜎𝑡.

• This holds only if 𝑥 𝑡 is absolutely integrable.



Fourier and Laplace 

Transform

Delta function transforms:

• LT of delta function 𝛿 𝑡 is given by:

ℒ 𝛿 𝑡 = 1, for all 𝑠.

• By definition, the FT of delta function is:

ℱ 𝛿 𝑡 = න
−∞

∞

𝛿 𝑡 𝑒−𝑖𝛺𝑡𝑑𝑡 = 1.

• Thus, LT and FT of 𝛿 𝑡 are the same.



Fourier and Laplace 

Transform

LT of right-sided exponential signal:

𝑥 𝑡 = 𝑒−𝑎𝑡𝑢 𝑡 , 𝑎 > 0, 

is given by:

ℒ 𝑥 𝑡 = 𝑋 𝑠 =
1

𝑠+𝑎
, Rⅇ 𝑠 > −𝑎.

By definition, the FT of the same signal is:

ℱ 𝑥 𝑡 = 𝑋 𝛺 = න
−∞

∞

𝑒−𝑎𝑡𝑢(𝑡)𝑒−𝑖𝛺𝑡𝑑𝑡 = න
0

∞

𝑒− 𝑎+𝑖𝛺 𝑡𝑑𝑡 =
1

𝑖𝛺 + 𝑎
.



Fourier and Laplace 

Transform

• Thus, LT and FT of 𝑥 𝑡 are the same for 𝑠 = 𝑖𝛺:

𝑋 𝛺 = 𝑋 𝑠 ቚ
𝑠=𝑖𝛺

.

• Note that 𝑥 𝑡 is absolutely integrable.



Fourier Transform pairs

Signal 𝑥 𝑡 Fourier Transform 𝑋 𝛺

𝛿 𝑡 1

𝛿 𝑡 − 𝑡0 𝑒−𝑖𝛺𝑡0

1 2𝜋𝛿 𝛺

𝑒𝑖𝛺0𝑡 2𝜋𝛿 𝛺 − 𝛺0

cos 𝛺0𝑡 𝜋 𝛿 𝛺 − 𝛺0 + 𝛿 𝛺 + 𝛺0

sin 𝛺0𝑡 −𝑖𝜋 𝛿 𝛺 − 𝛺0 − 𝛿 𝛺 + 𝛺0

𝑢 𝑡 𝜋𝛿 𝛺 +
1

𝑖𝛺

𝑢 −𝑡 𝜋𝛿 𝛺 −
1

𝑖𝛺



Fourier Transform pairs

Signal 𝑥 𝑡 Fourier Transform 𝑋 𝛺

𝑒−𝑎𝑡𝑢 𝑡 , 𝑎 > 0
1

𝑖𝛺 + 𝑎

𝑒−𝑎 𝑡 , 𝑎 > 0
2𝑎

𝑎2 + 𝛺2

𝑒−𝑎𝑡
2
, 𝑎 > 0

𝜋

𝑎
𝑒− ൗ𝛺2

4𝑎

𝑥 𝑡 = ቊ
1, 𝑡 < 𝑎
0, 𝑡 > 𝑎 2𝑎

sin 𝛺𝑎

𝛺𝑎

sin 𝑎𝑡

𝜋𝑡
𝑋 𝛺 = ቊ

1, 𝛺 < 𝑎
0, 𝛺 > 𝑎

sgn 𝑡
2

𝑖𝛺
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Fourier Transform 

Properties

• Linearity:

𝑎1𝑥1 𝑡 + 𝑎2𝑥2 𝑡 ↔ 𝑎1𝑋1 𝛺 + 𝑎2𝑋2𝛺.

• Time Shifting:

𝑥 𝑡 − 𝑡0 ↔ 𝑒−𝑖𝛺𝑡0𝑋 𝛺 .

• A time shift results only in a FT phase change.

• Frequency Shifting:

𝑒𝑖𝛺0𝑡𝑥 𝑡 ↔ 𝑋 𝛺 − 𝛺0 .



Click to edit 

Master title 

style
• Time Scaling:

𝑥 𝑎𝑡 ↔
1

𝑎
𝑋

𝛺

𝑎
.

• Effect of time scaling on 

a square wave signal:

𝑥 𝑡 = ቊ
1, 𝑡 < 2
0, 𝑡 > 2

for 𝑎 = 2.

• Signal frequency range 

increases.

Fourier Transform 

Properties

Effects of signal time scaling



Fourier Transform 

Properties

• Time Reversal (signal flipping about 𝑡 = 0):

𝑥 −𝑡 ↔ 𝑋 −𝛺 .

• Signal flipping is used in convolution definition.

• Duality (or Symmetry):

𝑋 𝑡 ↔ 2𝜋𝑥 −𝛺 .



Fourier Transform 

Properties

• First order differentiation in the temporal domain:
𝑑𝑥 𝑡

𝑑𝑡
↔ 𝑖𝛺𝑋 𝛺 .

• Higher order differentiation in the temporal domain:

𝑑𝑛𝑥 𝑡

𝑑𝑡𝑛
↔ 𝑖𝛺 𝑛𝑋 𝛺 .

• Multiplication by 𝑖𝛺 𝑛 amounts to high-pass signal filtering.

• Therefore, differentiation is a high-pass system.



Fourier Transform 

Properties

• Integration in the temporal domain:

න
−∞

𝑡

𝑥 −𝜏 𝑑𝜏 ↔ 𝜋𝑋 0 𝛿 𝛺 +
1

𝑖𝛺
𝑋 𝛺 .

• Division by 𝑖𝛺 amounts to low-pass signal filtering.

Therefore, integration is a low-pass system.

• Differentiation in the Frequency Domain:

−𝑖𝑡 𝑥 𝑡 ↔
𝑑𝑋 𝛺

𝑑𝛺
.



Fourier Transform 

Properties

• Signal convolution:

𝑥 𝑡 ∗ ℎ 𝑡 ↔ 𝑋 𝛺 𝐻 𝛺 .

• As FT can be computed through Discrete Fourier Transform

(DFT) for discrete signals, using the Fast Fourier Transform

(FFT) algorithms, it leads to fast convolution calculation.

• Signal multiplication:

𝑥1 𝑡 𝑥2 𝑡 ↔
1

2𝜋
𝑋1 𝛺 ∗ 𝑋2 𝛺 .



Fourier Transform 

Properties

• Parseval’s theorem:

න
−∞

∞

𝑥1 𝑡 𝑥2 𝑡 𝑑𝑡 =
1

2𝜋
න
−∞

∞

𝑋1 𝛺 𝑋2 −𝛺 𝑑𝛺 .

න
−∞

∞

𝑥 𝑡 2𝑑𝑡 =
1

2𝜋
න
−∞

∞

𝑋 𝛺 2𝑑𝛺 .

• Essentially, FT preserves energy after transformation.



Fourier Transform 

Properties

• If 𝑥 𝑡 is real:

𝑋 −𝛺 = 𝑋∗ 𝛺 ,

• If 𝑥 𝑡 = 𝑥𝑒 𝑡 + 𝑥𝑜 𝑡 , where 𝑥𝑒 𝑡 = 𝑥𝑒 −𝑡 and 𝑥𝑜 𝑡 =
−𝑥𝑜 −𝑡 are the even and odd components of 𝑥 𝑡 and:

𝑥𝑒 𝑡 ↔ 𝐴 𝛺 ,
𝑥𝑜 𝑡 ↔ 𝑖𝐵 𝛺 .

then: 

𝑥 𝑡 ↔ 𝑋 𝛺 = 𝐴 𝛺 + 𝑖𝐵 𝛺 .
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Frequency response of 

LTI systems

• The output 𝑦 𝑡 of a continuous-time LTI system is given by

the convolution:

𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ 𝑡 . 

• Applying the convolution property, we get:

𝑌 𝛺 = 𝑋 𝛺 𝐻 𝛺 .

• LTI system frequency response 𝐻 𝛺 : 

𝐻 𝛺 =
𝑌 𝛺

𝑋 𝛺

is the FT of its impulse response ℎ(𝑡).



Frequency response of 

LTI systems

𝛿 𝑡 𝑇 𝛿 𝑡 ℎ(𝑡)

𝑥 𝑡 𝑇 𝑥 𝑡 𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ 𝑡

𝑥 𝑡 ℱ 𝑥 𝑡

𝑌 𝛺 = 𝑋 𝛺 𝐻 𝛺

ℎ 𝑡 ℱ ℎ 𝑡

×



Frequency response of 

LTI systems

Polar representation of system frequency response 𝐻 𝛺 :

𝐻 𝛺 = 𝐻 𝛺 𝑒𝑖𝜃𝐻 𝛺 .

• 𝐻 𝛺 is the system frequency response magnitude.

• 𝜃𝐻 𝛺 is the system frequency response phase.



Frequency response of 

LTI systems

The behavior of the LTI system in the frequency domain is

completely characterized by its frequency response 𝐻 𝛺 :

• If 𝐻 𝛺 < 1 , the respective input signal frequency is

attenuated.

• If 𝐻 𝛺 = 0, the respective frequency is cutoff.

• If 𝐻 𝛺 = 1, the respective frequency passes through the

system.

• If 𝐻 𝛺 > 1, the respective frequency is amplified.



Frequency response of 

LTI systems

An input signal 𝑥 𝑡 = 𝑒𝑖𝛺0𝑡 with Fourier Transform: 

𝑋 𝛺 = 2𝜋𝛿 𝛺 − 𝛺0 , 

results in system output:

𝑌 𝛺 = 2𝜋𝐻 𝛺0 𝛿 𝛺 − 𝛺0 .

• Taking the inverse FT of 𝑌 𝛺 , we get:

𝑦 𝑡 = 𝐻 𝛺0 𝑒𝑖𝛺0𝑡 .

• An LTI does not change the frequency 𝛺0.

• 𝑒𝑖𝛺𝑡 is an LTI system eigenfunction with eigenvalue 𝐻 𝛺0 .



Frequency response of 

LTI systems

• Let:

𝑋 𝛺 = 𝑋 𝛺 𝑒𝑖𝜃𝑋 𝛺 , 𝐻 𝛺 = 𝐻 𝛺 𝑒𝑖𝜃𝐻 𝛺 ,

𝑌 𝛺 = 𝑌 𝛺 𝑒𝑖𝜃𝑌 𝛺 .

• Then from 𝑌 𝛺 = 𝑋 𝛺 𝐻 𝛺 we get:

𝑌 𝛺 = 𝑋 𝛺 𝐻 𝛺 ,
𝜃𝑌 𝛺 = 𝜃𝑋 𝛺 + 𝜃𝐻 𝛺 .

• System frequency response magnitude 𝐻 𝛺 is referred as

the gain of the system.



Frequency response of 

LTI systems

• Both signal differentiation and integration can be considered 

as linear systems having frequency response 𝐻 𝛺 .

• In signal differentiation:
𝑑𝑛𝑥 𝑡

𝑑𝑡𝑛
↔ 𝑌 𝛺 = 𝑖𝛺 𝑛𝑋 𝛺 .

multiplication in the frequency domain by 𝑖𝛺 𝑛 results in a

high-pass system:

𝐻 𝛺 = 𝑖𝛺 𝑛.



Frequency response of 

LTI systems

• The higher the differentiation order is, the more profound its

high-pass characteristics are.

• Differentiation typically enhances high-frequency signal

noise.

• Therefore, low-pass signal filtering must be performed

before signal differentiation.

• Second-order differentiation and beyond are typically

avoided, due to their noise sensitivity.



Frequency response of 

LTI systems

• In integration:

න
−∞

𝑡

𝑥 −𝜏 𝑑𝜏 ↔
1

𝑖𝛺
𝑋 𝛺 , if 𝑋 0 = 0.

division by 𝑖𝛺 the frequency domain amounts to low-pass

signal filtering:

𝐻 𝛺 =
1

𝑖𝛺
.

• Therefore, integration is a low-pass system.



Frequency response of 

LTI systems
A LTI system can be described by a linear differential

equation with constant coefficients:

𝑎𝑛
𝑑𝑛𝑦(𝑡)

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑦(𝑡)

𝑑𝑡𝑛−1
+⋯+ 𝑎0𝑦 𝑡

= 𝑏𝑚
𝑑𝑚𝑥 𝑡

𝑑𝑡𝑚
+ 𝑏𝑚−1

𝑑𝑚−1𝑥 𝑡

𝑑𝑡𝑚−1
+⋯+ 𝑏0𝑥 𝑡 ,

• 𝑎𝑖 , 𝑏𝑗 ∈ ℝ.



Frequency response of 

LTI systems
Then, by applying the LT in both parts of the previous formula, 

we have:

𝐻 𝑖𝛺 =
𝑌 𝑖𝛺

𝑋 𝑖𝛺
=
𝑏𝑚 (𝑖𝛺)𝑚+ 𝑏𝑚−1(𝑖𝛺)

𝑚−1+⋯+ 𝑏0
𝑎𝑛(𝑖𝛺)

𝑛+𝑎𝑛−1(𝑖𝛺)
𝑛−1+⋯+ 𝑎0

.

• Frequency response has rational form.

• Under certain conditions, its magnitude |𝐻 𝑖𝛺 | can 

become:

• 0, thus completely attenuating the respective frequencies;

• Very large (towards infinity), thus greatly amplifying the respective 

frequencies.



1D Filters

Filtering is the process where the amplitude/phase of the

frequency components of a signal are modified or even

reduced to zero.

• A “filter” is an LTI system, whose frequency response shows

this selective frequency modification behavior.



1D Filters

• An ideal filter allows some selected signal frequencies to 

pass, while completely attenuating the rest.

• Pass-band is the range of frequencies passed by the filter.

• Stop-band is the range of frequencies rejected by the filter.
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Ideal Low-Pass (LP) Filter:

𝐻 𝛺 = ൜
1, 𝛺 < 𝛺𝑚𝑎𝑥

0, 𝛺 > 𝛺𝑚𝑎𝑥
.

• 𝛺𝑚𝑎𝑥 : LP cut-off frequency.

1D Filters
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Ideal High-Pass (LP) Filter:

𝐻 𝛺 = ቊ
1, 𝛺 > 𝛺𝑚𝑖𝑛

0, 𝛺 < 𝛺𝑚𝑖𝑛
.

𝛺𝑚𝑖𝑛 : HP cut-off frequency.

1D Filters
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Ideal Bandpass (BP) Filter:

𝐻 𝛺 = ቊ
1, 𝛺1 < 𝛺 < 𝛺2
0, ⅇslⅇwhⅇrⅇ.

• 𝛺1, 𝛺2 : BP cut-off frequencies.

• Bandpass resonator is a band-pass 

filter having very narrow passpand

band, typically around resonation 

frequency 𝛺𝑝: 𝛺1, ≃ 𝛺2 ≃ 𝛺𝑠.

• Radio transmitter/receiver oscillators 

and resonators.
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Ideal Bandstop (BS) Filter:

𝐻 𝛺 = ቊ
0, 𝛺1 < 𝛺 < 𝛺2
1, othⅇrwisⅇ.

• 𝛺1, 𝛺2 : BS cut-off frequencies.

• notch filter is a band-stop filter 

having very narrow stop band, 

typically around frequency 𝛺𝑠: 
𝛺1, ≃ 𝛺2 ≃ 𝛺𝑠.

• 50/60 Hz rejection filters.
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• To avoid phase distortion, a filter phase response 𝜃𝐻 𝛺 is

typically linear over the frequency range of interest:

𝜃𝐻 𝛺 = 𝑎𝛺.

• Ideal frequency-selective filters are noncausal systems.
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• Filter bandwidth is the difference between filter cut-off

frequencies, if its pass-band is not infinite:

• For an ideal low-pass filter, its bandwidth is equal to its

cutoff frequency: 𝑊𝐵 = 𝛺𝑐.

• For an ideal bandpass filter, its bandwidth is the difference

between its two cuttoff frequencies: 𝑊𝐵 = 𝛺2 − 𝛺1.

• Typically a transition band exists between passpands and

stop bands.
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• Half-Power Bandwidth 𝑊3 𝑑𝐵 is defined by the frequency at

which the frequency response amplitude 𝐻 𝛺 drops to a

value equal to 𝐻 𝛺𝑚 / 2.

• 𝐻 𝛺𝑚 is the maximal frequency response amplitude.

• It shows the point at which the output power has dropped to

half of its peak value.

• At this frequency, we have 3 𝑑𝐵 attenuation:

𝐿 = 10 log10( 𝐻 𝛺 2/ 𝐻 𝛺𝑚
2) = 10 log10( 1/2) ≈ 3 𝑑𝐵.
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Analog electric filters:

• They are electric networks

consisting of resistances,

capacitors, inductors.

• The input-output relation of an

𝑅𝐶 filter is given by:

𝑅𝐶
𝑑𝑦 𝑡

𝑑𝑡
+ 𝑦 𝑡 = 𝑥 𝑡 .
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The frequency response 𝐻 𝛺 of the

𝑅𝐶 filter can be found by taking the FT

of both sides:

𝐻 𝛺 =
𝑌 𝛺

𝑋 𝛺
=

1

1 + 𝑖𝛺𝑅𝐶

=
1

1 +
𝑖𝛺
𝛺0

,

where 𝛺0 = Τ1 𝑅𝐶.
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• The frequency response

amplitude 𝐻 𝛺 is:

𝐻 𝛺 =
1

1 +
𝛺
𝛺0

2 ൗ1 2
.

• The 𝑅𝐶 filter is a low-pass one.

• High frequencies are attenuated.
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• Its frequency response

phase 𝜃𝛨 𝛺 is given by:

𝜃𝛨 𝛺 = − tan−1
𝛺

𝛺0
.

• It is a nonlinear function 

of 𝛺.

• It can become almost

linear for small 𝛺:

𝜃𝛨 𝛺 ≈ −
𝛺

𝛺0
.
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𝑹𝑳𝑪 filter input-output relation is given by:

𝐿
𝑑𝑥 𝑡

𝑑𝑡
+ 𝑅𝑥 𝑡 +

1

𝐶
න
−∞

1

𝑥 𝑡 𝑑𝑡 = 𝑦 𝑡 .

• 𝑥 𝑡 : input voltage,

• 𝑦 𝑡 : output current.
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Its differentiation results in a second-order differential equation:

𝐿
𝑑2𝑥 𝑡

𝑑𝑡2
+ 𝑅

𝑑𝑥 𝑡

𝑑𝑡
+
1

𝐶
𝑥 𝑡 =

𝑑𝑦 𝑡

𝑑𝑡

and frequency response:

𝐻 𝛺 =
𝑌 𝛺

𝑋 𝛺
=

𝑖𝛺

−𝐿𝛺2 + 𝑖𝑅𝛺 +
1
𝐶

.
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• If 𝑅 = 0, the frequency response

becomes:

𝐻 𝛺 =
𝑖𝛺

−𝐿𝛺2 +
1
𝐶

.

• It is an electric oscillator typically

resonating at frequency:

𝛺 = 1/ 𝐿𝐶.

• It has been extensively used in radio

transmitters.
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Temporal diffusion system:

𝑑𝑦 𝑡

𝑑𝑡
= 𝑐 𝑥 𝑡 − 𝑦 𝑡 .

• 𝑐: diffusion coefficient.

1D Systems



Click to edit 

Master title 

style

Its frequency response 𝐻 𝛺 can be found by taking the FT of both

sides:

𝐻 𝛺 =
𝑌 𝛺

𝑋 𝛺
=

𝑐

𝑐 + 𝑖𝛺
.

• It is a low-pass system.

• It can model many phenomena, e.g., pharmacokinetics

• It can be extended to 1D, 2D and 3D spatiotemporal diffusion and

to information diffusion over graphs.
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Mass-spring-damper mechanical system.

If force 𝑓(𝑡) is exercised on a mass 𝑚 that is

attached to a spring having constant 𝑘 that

follows Hooke’s law and to a damper having

damping constant 𝛽, the displacement 𝑦(𝑡)
is given by the exercised forces:

𝑚
𝑑2𝑦 𝑡

𝑑𝑡2
+ 𝛽

𝑑𝑦 𝑡

𝑑𝑡
+ 𝑘𝑦 𝑡 = 𝑓 𝑡 .

• It models car suspension systems.
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Fourier Transform of this system is:

−𝑚𝛺2𝑌 𝛺 + 𝛽𝑖𝛺𝑌 𝛺 + 𝑘𝑌 𝛺 = 𝐹 𝛺 .

Therefore, its transfer function is given by:

𝐻 𝛺 =
𝑌 𝛺

𝐹 𝛺
=

1

−𝑚𝛺2 + 𝛽𝑖𝛺 + 𝑘
.
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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