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Periodic signals @ML

A continuous-time signal x(t) Is periodic, when there Is a
positive non-zero value T for which:

x(t + T) = x(¢t), for all t.
* T Is referred to as the period of the signal.

* Frequency: F = % It Is measured Iin Hertz (Hz).

2TC

 Angular frequency: 2 = 2nF = —-
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Periodic signals C\ZML

Trigonometric signals (sine, cosine):

x(t) = Acos(t + @) = %[eim”‘/)) + e HAHP)],

x(t) = Asin(t + @) = i [eim”g") — —i(ﬂt+<p)]_

z(?)
» A: amplitude,
« (2 angular frequency, ¢: phase X\ / /
-t
* The period of the sinusoid IST = — \X/
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Periodic signals C\ZML

Complex exponential signal:

x(t) = eSt = e+ = oIt (cosNt + i sin N2t).

Special case:

x(t) = Ae'™ = Acost + i Asin 0t.
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Fourier Transform @ML

Fourier transform (FT) of signal x(t) is a function
transformation X(12) :

X(2) 2 F{x(t)} = foox(t)e‘imdt.

Inverse Fourier transform of X(2) is defined as:
1 ™ .
x(t) 2 FHX()} = Ej X(D)etdn .
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Fourier Transform @ML

» Fourier transform pair is denoted by: x(t) & X(12).

« Fourier transform essentially decomposes an 1D signal x(t)
INto a sum of periodic complex exponential functions,
resulting in signal spectrum (frequency content) X(2) at
frequency 1.
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Fourier Transform @ML

The Fourier transform X(2) is, in general, a complex one:
X(2) =R +il(Q) = |X(2)]|eteW),
o X(N) is referred as the (Fourier) spectrum of x(t).

* |X(2)]| is the spectrum magnitude.
* () is the spectrum phase.
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Fourier Transform @ML

 Band-limited signals (or low-pass signals) are those
satisfying:
|X(-Q)| = 0, |-Q| > max-

* ..., 1S the band-limited signal bandwidth.
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Fourier Transform
FT X(£) is given by:
X(2) :f

— 00

If x(t) is a real-valued signal, then:
R(N) = f x(t) cos(2t) dt.

[(2) =— ] oox(t) sin(2t) dt.

(vmL

x(t) et dt = Joox(t)(cos(.(lt) — isin(Qt)) dt.



Fourier Transform

Consequently, if x(t) is a real function:

 R(),I(N) are even/odd functions, respectively:

R(—) = R(12), I[(—02) = —-1(N).

« FT satisfies the complex conjugation property:

* *x denotes complex conjugation.
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Fourier Transform @ML

Dirichlet conditions are sufficient for FT X(2) convergence:
1. x(t) is absolutely integrable, as defined by:

f lx(t)|dt < oo.

2. x(t) has bounded variation within any finite interval [a, b].

3. x(t) is a continuous function or contains finite number of
finite discontinuities in any given finite interval.

If conditions 2,3 are met, x(t) IS a piecewise smooth
function.
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Fourier Transform @ML

The square window function:

£(6) = {1, lt| < T/2

0, |t| > T/2
satisfiles Dirichlet conditions. Its FT Is a real sync
function:
% . Lz 2 QT
X(0) =f x(t)e“mdtzj _‘mdt——sm( )
—00 T/2 () 2
ar
Sin
NT /2
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Fourier and Laplace
Transform

Fourier transform:

X(N) = foox(t)e‘imdt,

IS a special case of bilateral Laplace transform (LT):
X(s) = j x(D)e=stdt,
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Fourier and Laplace C\ZML
Transform

If s = o + if2, Laplace transform becomes:

oo

X(o +iN) =f x(t)e‘(“”mtdt:J lx(t)e e 12t dt,

and.:

X(o+i0) = F{x(t)e °}.
 The bilateral Laplace transform of x(t) can be interpreted as
the Fourier transform of signal x(t)e~°t.

This holds only if x(t) is absolutely integrable.

|| Artificial Intelligen
Informatio AIy Lb




Fourier and Laplace
Transform

Delta function transforms:
« LT of delta function §(t) is given by:
L{I6(t)} =1, for all s.

« By definition, the FT of delta function is:

F{5(t)} = j S()e Mtdt = 1.

Q”D * Thus, LT and FT of §(t) are the same.

Ifm’fAIyLb
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Fourier and Laplace C\ZML
Transform

LT of right-sided exponential signal:
x(t) = e u(t),a >0,
IS given by:

L{ix(t)}=X(s) =— Re(s) > —a.

s+a

By definition, the FT of the same signal is:

= . S . 1
F{x()} =X(2) = j e Mty(t)e Hidt = f e~(atidtgy —
— 00 0

iN+a
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Fourier and Laplace C\ZML
Transform

 Thus, LT and FT of x(t) are the same for s = if2:

X(2) =X(s)

S=iMN

« Note that x(t) is absolutely integrable.
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Fourier Transform pairs @ML

Signal x(t) Fourier Transform X(2)

5(t) 1
5(t — to) e~ Mo
1 2o ()
elfot 2n5 (2 — N,)
cos(2yt) m[6(2 — ) + 652 + 0p)]
sin(2,t) —im[6(02 — 02y) — 6(2 + Q)]
u(t) 6 (2) + i
i)
1
u(—t) nd(2) — 0
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Fourier Transform pairs

Signal x(t)

Fourier Transform X(2)

1
e~ *tu(t), a>0
i+a
2a
e—altl a>0
a? + 0?
e—atz’ a>0 Ee_'QZ/éla
a
_ )1, It <a sin(a)
x(t) = {o, it > a A
sin(at) |1, 2] < a
nt X(m‘{o 21 > a
2
sgn(t)

. XP)
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Fourier Transform @ML
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Fourier Transform C\ZML
Properties

* Linearity:
a;x1(t) + ax,(t) & a; X;(2) + a, X, 1.

* Time Shifting:
x(t —ty) © e o X ().
« A time shift results only in a FT phase change.

* Frequency Shifting:
elPolx(t) & X(Q — 0,).
@ || @F==rr= s



Fourier Transform

Properties

« Time Scaling:
1 9,
x(at) o —X[—].
la] \a

« Effect of time scaling on
a square wave signal:

1, |t] < 2
x(0) = {0, t] > 2
fora = 2.
« Signal frequency range
Increases.
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Fourier Transform
Properties

* Time Reversal (signal flipping about t = 0):
x(—t) & X(=0).

 Signal flipping is used in convolution definition.

 Duality (or Symmetry):
X(t) o 2nx(—0).
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Fourier Transform C\ZML

Properties
 First order differentiation in the temporal domain:
dx(t)

« Higher order differentiation in the temporal domain:

d™x(t)
dtn
« Multiplication by (i2)™ amounts to high-pass signal filtering.

* Therefore, differentiation is a high-pass system.
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Fourier Transform C\ZML
Properties
 Integration in the temporal domain:

f toox(—r)dr o TX(0)5(0) + iiﬂxm).

* Division by if2 amounts to low-pass signal filtering.
Therefore, integration is a low-pass system.

 Differentiation in the Frequency Domain:

it o Z 8.
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Fourier Transform C\ZML
Properties

« Signal convolution:
x(t) * h(t) & X(2)H(N).

* As FT can be computed through Discrete Fourier Transform
(DFT) for discrete signals, using the Fast Fourier Transform
(FFT) algorithms, it leads to fast convolution calculation.

 Signal multiplication:

B (OX(0) © > X, (@) X, ()

|| Artificial Infelligen
Informatio AIy Lb



Fourier Transform
Properties

 Parseval’s theorem:
CO 1 00)
f x1(t)x,(t)dt = - f X)X, (—2)d1.

f_o:olx(t)lzdt =%f:|X(m|2d!).

« Essentially, FT preserves energy after transformation.
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Fourier Transform C\ZML
Properties

o |f x(t) is real:
X(—02) = X"(),

e If x(t) =x,(t) +x,(t), where x,(t) =x,(—t)and x,(t) =
—x,(—t) are the even and odd components of x(t) and:
xe(t) © A(N),
x,(t) © iB(1).
then:
x(t) o X(2) =A2) +iB(N).



Fourier Transform @ML

* Periodic functions

* Fourier Transform

* Fourier Transform Properties

« Fourier Transform and LTI systems
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Frequency response of C\ZML
LTI systems

* The output y(t) of a continuous-time LTI system is given by
the convolution:

y(t) = x(t) * h(t).

* Applying the convolution property, we get:
Y(2) = X(Q)H(2).

« LTI system frequency response H({2):

()

IS the FT of its impulse response h(t).
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Frequency response of
LTI systems

S (t)=—>

T15(0)]

—> h(t)

Tx(0)]

>y (t) = x(t) * h(t)

Fix(t)}

Fih(t)}

E?—» Y(2) = X(2)H(D)
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Frequency response of C\ZML
LTI systems

Polar representation of system frequency response H(2):
H(Q) = |[H(Q)|e0rD),

« |H(2)] is the system frequency response magnitude.
» 04() is the system frequency response phase.
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Frequency response of C\ZML
LTI systems

The behavior of the LTI system In the frequency domain is
completely characterized by its frequency response H((2):

« If |H(2)| <1, the respective input signal frequency is
attenuated.

« If |H(2)| = 0, the respective frequency is cutoff.

« If [H(2)| = 1, the respective frequency passes through the
system.

« If |H(2)| > 1, the respective frequency is amplified.
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Frequency response of C\ZML
LTI systems

An input signal x(t) = et with Fourier Transform:
X(2) =2n6(2 — 0y),
results in system output:
Y(2) = 2nH(2y)6(2 — Q).
« Taking the inverse FT of Y(£2), we get:
y(t) = H(2g)e .

 An LTI does not change the frequency {2,.
Q”D :Heif‘ffgls an LTI system eigenfunction with eigenvalue H((2,).
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Frequency response of C\ZML
LTI systems

e |Let:

X(2) = |X(@2)|e9xW, H(Q) = |H(Q2)|eHW),
Y(2) = |Y(Q)|etfr D,

 Then fromY(2) = X(2)H(N) we get:
Y ()] = |X(DI||H(D)],
Oy (12) = 0x(2) + 6, (2).
« System frequency response magnitude |H(2)] is referred as



Frequency response of C\ZML
LTI systems

« Both signal differentiation and integration can be considered
as linear systems having frequency response H(12).

* |n signal differentiation:
d™x(t)
dt™
multiplication in the frequency domain by (i2)™ results in a
high-pass system:

oY) = ({D)"X(N).

H2) = (i)™
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Frequency response of C\ZML
LTI systems

* The higher the differentiation order is, the more profound its
high-pass characteristics are.

 Differentiation typically enhances high-frequency signal
noise.

 Therefore, low-pass signal filtering must be performed
before signal differentiation.

« Second-order differentiation and beyond are typically
avoided, due to their noise sensitivity.
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Frequency response of C\ZML
LTI systems

* |n Integration:

ft x(—1)dt © ,iX(.(Z), if X(0) = 0.
o 1)

division by if2 the frequency domain amounts to low-pass
signal filtering:

1
H(2) = —.
(D) if)
* Therefore, integration is a low-pass system.
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Frequency response of C\ZML
LTI systems

A LTI system can be described by a linear differential
equation with constant coefficients:

d"y(t) d" "y (¢)
aAn i + An-1 -1 1 + -+ aoy(t)
d™x(t) d™ x(t)
=2 bm qtm + bm_1 qpm-1 Rk box(t),
¢ Cll',b' € R.
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Frequency response of C\ZML

LTI systems

Then, by applying the LT in both parts of the previous formula,
we have:

Y(i2) b, (iD)™+ b,,_1(i2)™ 1+ ...+ b,
X(i2) ~  a,(i)"+a, (i) I+ - +ag

* Frequency response has rational form.

« Under certain conditions, its magnitude |H(if2)| can
become:
0, thus completely attenuating the respective frequencies;

» Very large (towards infinity), thus greatly amplifying the respective
frequencies.
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1D Filters @ML

Filtering Is the process where the amplitude/phase of the
frequency components of a signal are modified or even

reduced to zero.

« A "filter” is an LTI system, whose frequency response shows
this selective frequency modification behavior.
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1D Filters @ML

* An ideal filter allows some selected signal frequencies to
pass, while completely attenuating the rest.

« Pass-band is the range of frequencies passed by the filter.
« Stop-band is the range of frequencies rejected by the filter.
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1D Filters

Ideal Low-Pass (LP) Filter:

1 12| < Qg

H(() ={' .
HWDT=00, 101> 0,

Q... LP cut-off frequency.
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1D Filters

|ldeal High-Pass (LP) Filter:

1) |Q|>Qmm
H(N)| = .
IH @) {o, 2] < 2,0

..in - HP cut-off frequency.
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1D Filters

)1, N, < |2]| <N,
[H()| = {O, eslewhere.

* (4,0, BP cut-off frequencies.

 Bandpass resonator is a band-pass
filter having very narrow passpand

band, typically around resonation
frequency ,: 2,,= 0, = (.

 Radio transmitter/receiver oscillators
O” nd-resonators.
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9®

1D Filters

|deal Bandstop (BS) Filter:
0, N, <2 <N
H@)] ={ 1< M1 <0,

* (4,0, :BS cut-off frequencies.

« notch filter is a band-stop filter
having very narrow stop band,
typically around frequency (2.:
0q,= 0, = ().

* 50/60 Hz rejection filters.

Artificial Intelligence &
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1D Filters @ML

« To avoid phase distortion, a filter phase response 64(2) is
typically linear over the frequency range of interest:

0,(02) = an.

+ |deal frequency-selective filters are noncausal systems.
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QIO

1D Filters

 Filter bandwidth iIs the difference between filter cut-off
frequencies, If its pass-band is not infinite:

 For an ideal low-pass filter, its bandwidth is equal to its
cutoff frequency: Wy = 12..

« For an ideal bandpass filter, its bandwidth is the difference
between its two cuttoff frequencies: Wy = 2, — (2.

» Typically a transition band exists between passpands and
stop bands.
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1D Filters

Half-Power Bandwidth W; ;5 Is defined by the frequency at
which the frequency response amplitude |H(£2)| drops to a
value equal to |H(2,,))|/ V2.

H((,,) is the maximal frequency response amplitude.

It shows the point at which the output power has dropped to
half of its peak value.

At this frequency, we have 3 dB attenuation:

L = 10log1o(|H(DI?/IH(2:n)]*) = 101l0gy0(1/2) ~ 3 dB.
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9®

1D Filters

Analog electric filters:

« They are electric networks
consisting of resistances,
capacitors, inductors.

« The input-output relation of an
RC filter is given by:

dy(t) B
RCT + y(t) = x(t).

Artificial Intelligence &
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9®

1D Filters

The frequency response H(2) of the
RC filter can be found by taking the FT VWAV
of both sides: T

H(N) =

1

X() 1+ i0RC l
O

de— =

_— 0

1’
1+-Q_O

where 2, = /5.
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9®

1D Filters

f—

 The frequency response
amplitude |H()| is:
1
H(@Q)| = e |
0N 2 2 0
\1 + () \

« The RC filter is a low-pass one.
« High frequencies are attenuated.
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1D Filters

« Its frequency response
phase 64 () is given by:

0,(0N) =—tan™?! (%)

 |tis a nonlinear function
of (.

e It can become almost
linear for small 2:

0
HH(-Q) =

‘. 'QO
| | Artificial Intelligence &
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1D Filters

RLC filter input-output relation is given by:

dx(t)

1 1
LT + Rx(t) + Ef_oox(t)dt = y(t).

« x(t): input voltage,
« y(t): output current.
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1D Filters @"’"-

lts differentiation results in a second-order differential equation:

d?x(t) dx(t) 1 dy(t)
L=z TRt =—4

and freguency response:
Y(2) if)

HD =30

—L0? + iRN +%
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1D Filters @"’"-

« If R=0, the frequency response —
becomes:
H() = .
1 »
_LQZ _I_ E .|'||'_|®
It iIs an electric oscillator typically

resonating at frequency:

N =1/+LC.
« It has been extensively used in radio
transmitters.
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1D Systems @ML

high concentration
Temporal diffusion system:

e @ o @
....o.
dy(t) o ¢ o0
T=C(X(t)—3’(t))- X DA
o c: diffusion coefficient.
@
O

low concentration
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1D Systems @ML

Its frequency response H(f2) can be found by taking the FT of both

sides:
Y() C

TX(W@)  c+in’

« lItis a low-pass system.
It can model many phenomena, e.g., pharmacokinetics

* It can be extended to 1D, 2D and 3D spatiotemporal diffusion and
to information diffusion over graphs.
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9®

1D Systems

Mass-spring-damper mechanical system.
If force f(t) Is exercised on a mass m that is
attached to a spring having constant k that
follows Hooke's law and to a damper having
damping constant f, the displacement y(t)
IS given by the exercised forces:

d? d
0 520 4 ky = £

m

* |t models car suspension systems.

Artificial Intelligence &
Information Analysis Lab
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1D Systems @ML

Fourier Transform of this system is:
—-mN?Y(Q) + BiNY (D) + kY (2) = F().

Therefore, its transfer function is given by:

Y@ 1
H{2) T F(Q) —-mQ%2+Bi0+k
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Q& A

Thank you very much for your attention!

More material in
http://icarus.csd.auth.gr/cvmisweb-lecture-series/ /

Contact: Prof. |. Pitas ——
pitas@csd.auth.gr
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