
Federated Learning

summary

G. Kalitsios, K. Tsechelidou Prof. Ioannis Pitas

Aristotle University of Thessaloniki

pitas@csd.auth.gr

www.aiia.csd.auth.gr
Version 1.2

Federated Learning

• Introduction

• Centralized Learning

• Decentralized Learning

• Federated Learning

• Platforms

• Federated Learning Algorithms

• Privacy Principles & Technologies

• Challenges

• Benefits and costs

• Applications

• Open problem areas

• Conclusion

• Most data nowadays are:

a) created on edge devices such as smartphones, on the internet, IoT

sensors attached to industrial equipment or

b) are controlled by entities, such as institutions (e.g., hospitals) or

companies.

• Current practices dictate that for training ML-based models, we move the

data to a data center, where the ML model is located.

Edge Devices

Where data is
created

Data Center

Capable to store and
process data.

Manage data and
training process

Centralized Learning

The data moves

Introduction

• Problems

• There are strict regulations regarding data privacy nowadays.

• For this reason, it is usually not practical to collect and upload

consumer data into a central location.

• Questions Raised

• How can we train ML systems from decentralized data?

• How can we exploit the relevant information, without direct access to

the data themselves?

• How can the data owners of the data be sure that they will not be

exposed?

Introduction

Centralized Learning

• ML model (to be trained) and all data are in one place.

• Traditionally there is a server in the cloud that hosts the trained ML model

and all clients talk to it to make a prediction on their behalf.

Advantages

• ML model on the server can be trained on data from all clients.

Server

Data Node

ML Model

Feedback

Collected Data

Prediction

Request

User

Decentralized Learning

Server

User

Data
Node Local

Trained

Model

• Why do we even need a server? Can we learn without collecting

data.

• Each user is limited to its own data.

• Each user works autonomously (trains its own model).

• No data leave the user device.

One-way decentralized learning scenario.

• Initial ML model is pre-trained using proxy data on the server.

• It is deployed and further improved (re-trained) on user device.

• Nothing leaves the user device.

• Once deployed, it can not easily learn new common data patterns.

ServerLocal

Trained

Model

Proxy

Data

User Initial Model

Data Node

Decentralized Learning

Federated Learning

Federated Learning (FL) is a Distributed Learning technique, which is

built upon the core idea revolving around data privacy.

• Google introduced Federated Learning in 2017.

• Federated Learning attempts to answer the question: Can we train

our ML model, without the need to transfer out data over to a

central location?

• Unlike the traditional ML approach, now each local ML model is

shared among the servers in the data center.

• No user data are shared.

Edge Devices

Where data is created.
Manage data and train the

local ML model.

Data Center

Rules the FL process.
Manage the global ML

model and the
communication with the

edge parties.

Federated Learning

The model moves

• Each user/entity device trains its own ML model locally.

• The server combines the local ML models from different devices into a

single federated model and it never has direct access to the training

data.

Federated Learning

A typical Federated Training process includes:

1. Broadcasting: The clients download the current model parameters w

2. Local training: The clients locally compute training parameters (or

gradients) and send locally trained model updates 𝒘𝑖 of i-th client to

the server.

Server
User

Local ModelLocal

Trained

Model
Data#1 Node#1

Local Model updates

Proxy

Data

Federated Learning Process(1)

𝒘𝑖

w

3. Model Aggregation: The server performs secure aggregation over the

uploaded parameters from the clients without learning local information,

to construct an improved global model.

Typically, Federated Model Averaging Algorithm is used in aggregation

phase.

User

+

Federated Model

Node #1

Node #2

Node #3

Federated Learning Process (2)

𝒘𝑖

w

𝒘𝑖

𝒘𝑖 w
w

Server

4. Model updating: The server locally updates the model based on the

aggregated updates computed from the clients that participated in the

current round.

The server orchestrates the training process, by repeating the previous steps

until training is stopped.

User

+

Federated

Model

Local

Trained

Model

Node #1

Node #2

Node #3

Federated Learning Process (3)

w

𝒘𝑖

𝒘𝑖

𝒘𝑖

• An example of a star-like FL topology is given here, where each client

process and stores data locally (no data sharing happens), while only

model updates travel through the network.

Local database#1 Local database#2

Local database#3 Local database#4

Local server#1 Local server#2

Local server#3 Local server#4

Processing &
Storage

Processing &
Storage

Processing &
Storage

Processing &
Storage

Processing

Node #1 Node #2

Node #3 Node #4

Federated Learning

Let us consider a typical FL system consisting of one server and N clients. Let 𝐷𝑖
denote the local database held by the client C𝑖 , where 𝑖 ∈ {1, 2, . . . , N}. The server

aggregates the weights (local models’ parameters) received from the N clients as:

w = σ𝑖=1
𝑁 |𝐷𝑖|

|𝐷|
𝒘𝑖

where 𝒘𝑖 is the parameter vector trained at the i-th client, w is the parameter vector

after aggregating,
|𝐷𝑖|

|𝐷|
≥ 0 with σ𝑖=1

𝑁 |𝐷𝑖|

|𝐷|
= 1 and 𝐷 = σ𝑖=1

𝑁 |𝐷𝑖| is the total size of all

data samples. As an optimization problem, this can be formulated as:

w* = arg𝑚𝑖𝑛 σ𝑖=1
𝑁 |𝐷𝑖|

|𝐷|
𝑓𝑖(𝒘, 𝐷𝑖)

where 𝑓𝑖 is the local loss function of the C𝑖.

Federated Learning Definition

Federated Averaging Algorithm is the first FL algorithm introduced by

Google. Its steps are:

• We start with FL manager choosing some clients to participate in one

federated round and send them the initial ML model.

• FL manager job is to orchestrate this process and feed the same

initial model to all the nodes.

• Each client trains the model locally using its own local data.

• Then each client send back their new modified local model weights to

the FL manager.

Federated Averaging

Algorithm

FedProx algorithm is a modification of Federated Averaging Algorithm.

• With some simple modifications, it achieves better performance and

heterogeneity.

• Each device that participates in a federated cycle has its own

performance and its own limitations, so it does not make sense to

expect all devices to do the same job.

• Τhe FedProx algorithm can accommodate both partial and uniform

work.

• In this way, FL system heterogeneity is accounted for.

• FedProx algorithm is more stable than Federated Averaging Algorithm.

FedProx Algorithm

FedMA algorithm is used to implement federated learning with Neural

Networks.

• This algorithm builds the shared global model with a layer-by-layer

mapping and averaging values of hidden layer weights with similar

feature extraction signatures.

• First, the FL manager collects the client first layer weights and

performs one-layer mapping to obtain the first layer weights of the

federal model.

• The FL manager then sends these weights to the clients, who train all

the other layers using their own datasets.

• FedMA is implemented in PyTorch.

FedMA Algorithm

• Although the local data of the clients is kept locally in FL, this is not ensure

the privacy protection of them.

• FL raises concerns regarding the goals and capabilities of an adversary.

• Model update poisoning: the adversary controls directly and alters local models’

updates sent to the server.

• Data Poisoning Attacks: the adversary can only influence the data collection process

at the edge of the Federated Learning system. It can be performed for targeted attacks

(or back door) and untargeted attacks.

• Inference-Time Evasion Attacks: the model may be accessible to any malicious client

during broadcasting phase.

Federated Learning Concerns

The main considerations of privacy enhancing techniques within the Federated

Learning framework include:

• Trade off between privacy protection and ML system performance.

• Level of trust within the local participants and the global server.

• Mechanisms for information leakage prevention.

• Traceability and accountability that limit the risk of misuse by third parties.

Privacy Principles

• Differential Privacy: Noise addition to data locally (Local Differential

Privacy) or after aggregation step (Global Differential Privacy)

• Homomorphic Encryption: Encryption in the data before they are going to

be shared, so that data can be analyzed but its not possible to decoded

them into the original format.

• Secure Multiparty Computation: The data analysis is divided into several

parts, so that no one can see the full set of inputs.

• Zero-knowledge Proof Technologies: Users can prove their knowledge

of a variable (e.g., price), without revealing the variable value itself.

Privacy Enhancing

Techniques

Privacy Enhancing Techniques

in Federated Learning

Server/

Aggregator

Node

s

Differential Privacy

Adds calibrated noise

on the client’s data

that protects against

inference attacks.

Secure Multiparty Computation

Aggregate/compute without a third

party trust provider.

Homomorphic Encryption

Techniques that work on

encrypted data.

Local Differential Privacy

Noise

Noise

Noise

Untrusted

Aggregator

Raw Data Private Data

• Local Differential Privacy (LDP) is a state-of-the-art approach that enables

statistical calculations, while simultaneously protecting the privacy of each

user. If ℳ is a differentially private mechanism (e.g., noise addition), the

model parameter after aggregation is:

𝒘 = aggregate (ℳ(𝒘𝑖), ℳ(𝒘𝑖+1), … ,ℳ(𝒘𝑁))

𝒘𝑖

𝒘𝑖

𝒘𝑖

𝑴(𝒘𝑖)

𝑴(𝒘𝑖)

𝑴(𝒘𝑖)

w

w

w

Global Differential Privacy

Raw Data
Trusted

Curator

Noise

Query

Raw answer
Private answer

Untrusted

Querier

• In Global Differential Privacy (GDP), a central aggregator is used, who

has access to the raw data from each user.

• If ℳ is a differentially private mechanism (e.g., noise addition), the global

parameter vector after aggregation is:

𝒘 = ℳ (aggregate (𝒘𝑖, 𝒘𝑖+1, …, 𝒘𝑁)

𝒘𝑖

w

w

w
𝒘𝑖

𝒘𝑖

Homomorphic Encryption
Homomorphic Encryption (HE) allows computation of encrypted data,

creating encrypted results that, when decrypted, match the results of

operations, as if they were originally executed.

+

Encrypted A

Value A

Encrypted B

Value B

Encrypt with

key P
Encrypt with

key P

Encrypted A+B

Value A+B

Value A
Decrypt with

key P

Private Data

Operation +

on encrypted

values

Model Owner

Value B
Value

A+B
+

Zero-knowledge Proof

Protocol
Zero-knowledge proof protocol.

• At the first step, the prover receives authenticated private data from the

trusted authority (on a regular basis or on demand).

• At the second step, the verifier makes a custom request upon the prover’s

personal data.

• The prover then, at the third step computes the response on the verifier’s

question and constructs the Zero-Knowledge proof of correct computation.

• At the fourth step, the response and the proof are transmitted to the verifier.

Secure Multi-Party

Computation
Secure Multi-Party Computation (SMC).

• 𝑁 parties compute a function that keeps their own input private. Each

party only has access to its own input-output pair.

𝑦1

𝑥1

1

𝑦4𝑦5

𝑦2

𝑦3

5

2

3

4

𝑥2

𝑥3

𝑥4𝑥5
𝑁

𝑦1, 𝑦2,…, 𝑦𝑁= f (𝑥1, 𝑥2.., 𝑥𝑁)

𝑦𝑁
𝑥𝑁

Secure Multiparty

Computation

Data Holder

(Image,

Video, Text)

Pre-processing/

Feature Extraction

Secure

Gateway

Classification

Algorithm

Provider

Classification

parameters
Secure

Gateway

Secure

Gateway

Classification

Classification

Features

Features

Cloud computing

provider

…

MPC

server 1

MPC

server 2

MPC

server 3

MPC

server N

Analyst

Classification

parameters

Characteristic use case of Secure Multiparty Computation.

Federated Learning

Challenges

• Communication: A lot of research is focusing on reducing the number

of update rounds and the update message itself, i.e., the training

derivatives.

• System heterogeneity: FL systems are almost by definition

heterogeneous in that the device may vary in storage, computational

and communication capabilities.

• Hence a FL training scheme must be dynamic or conform to the

lowest denominator of the devices.

Federated Learning

Challenges

• Statistical heterogeneity: Since ML systems typically rely on the

Identical Independent Distributed (IID) data assumption, special

techniques must be developed to handle the statistical data

heterogeneity, if present.

• Privacy: FL is designed to preserve privacy, but care still need to be

given to ensure that sensitive information is not revealed for specific

users or devices.

Private Data

Private Data

Private Data

Research Medical

Center

Community

Hospital

Canser Treatment

Center

Local Model

Local Model

Local Model

Global Federated

Model

FL Manager Local Model

Global Model

Federated Learning application in Healthcare.

Federated Learning

Applications

Bibliography
[GOO2016] Goodfellow I, Bengio Y, Courville A, Bengio Y., Deep learning MIT press, 2016.
[HAY2009] S. Haykin, Neural networks and learning machines, Prentice Hall, 2009.
[BIS2006] C.M. Bishop, Pattern recognition and machine learning, Springer, 2006.
[GOO2016] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016
[THEO2011] S. Theodoridis, K. Koutroumbas, Pattern Recognition, Elsevier, 2011.
[ZUR1992] J.M. Zurada, Introduction to artificial neural systems. Vol. 8. St. Paul: West publishing

company, 1992.
[ROS1958] Rosenblatt, Frank. "The perceptron: a probabilistic model for information storage and

organization in the brain." Psychological review 65.6 (1958): 386.
[YEG2009] Yegnanarayana, Bayya. Artificial neural networks. PHI Learning Pvt. Ltd., 2009.
[DAN2013] Daniel, Graupe. Principles of artificial neural networks. Vol. 7. World Scientific, 2013.
[HOP1988] Hopfield, John J. "Artificial neural networks." IEEE Circuits and Devices Magazine 4.5

(1988): 3-10.

63

Q & A

Thank you very much for your attention!

More material in

http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas

pitas@csd.auth.gr

32

