Fast Fourier Transform summary

G. Fountoukidou, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr
www.aiia.csd.auth.gr
Version 2.2.1

Fast Fourier Transform

- DFT to FFT
- Decimation in Time (DIT) FFT
- Decimation in Frequency (DIF) FFT
- FFT Computation issues
- Goertzel Algorithm
- Bluestein Algorithm

Fast Fourier Transform

Discrete Fourier Transform (DFT) of a signal $x(n)$:

$$
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{n k}
$$

- N complex roots of unity:

$$
W_{N}=e^{-i \frac{2 \pi}{N}}, \quad W_{N}^{N}=1
$$

Inverse Discrete Fourier Transform (IDFT):

$$
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{n}^{-n k}
$$

Fast Fourier Transform

- DFT computation requires complex multiplications and additions.
- Each complex multiplication requires 4 real multiplications.
- DFT or IDFT computation by definition requires 2 for loops.
- Their computation complexity is $O\left(N^{2}\right)$.
- The most important advantage of DFT is that it can be calculated very fast using the Fast Fourier Transform (FFT) algorithm.

Fast Fourier Transform

- DFT to FFT
- Decimation in Time (DIT) FFT
- Decimation in Frequency (DIF) FFT
- FFT Computation issues
- Goertzel Algorithm
- Bluestein Algorithm

Decimation In Time FFT

First FFT Stage for $N=8$.

Second FFT Stage for $N=8$.

Decimation In Time FFT

- This method results in the so-called Decimation in Time FFT (DIT FFT):
- This decimation process is continued, by breaking the calculation of the DFTs of length $N / 2$ into 4 DFTs of length $N / 4$, etc., until we come to DFTs of length 2 :

Decimation In Time FFT

- Each stage consists of $N / 2$ basic computation structures called "butterflies".
- Each butterfly has 2 complex multiplication and two complex additions.

Decimation In Time FFT

- DIT FFT has $n=\log _{2} N$ steps. Each step has $\frac{N}{2}$ butterflies.
- Therefore, it requires a total of:

$$
M=2\left(\frac{N}{2}\right) \log _{2} N=N \log _{2} N .
$$

complex multiplications and $\operatorname{Nlog}_{2} N$ complex additions.

- We already have a reduction in computational from $\mathrm{O}\left(N^{2}\right)$ to $\mathrm{O}\left(N \log _{2} N\right)$.

Artificial Intelligence \&
Information Analysis Lab

Decimation In Time FFT

DIT FFT $N=8$.

Fast Fourier Transform

- DFT to FFT
- Decimation in Time (DIT) FFT
- Decimation in Frequency (DIF) FFT
- FFT Computation issues
- Goertzel Algorithm
- Bluestein Algorithm

Decimation in Frequency FFT

First DIF FFT stage $N=8$.

Second DIF FFT stage $N=8$.

Decimation in Frequency

Final DIF FFT stage $N=8$.

Decimation in Frequency FFT

- DIF FFT butterfly requires one complex multiplication and two complex additions.
- Therefore DIF FFT also requires $N \log _{2} N$ complex additions and ($N / 2$) $\log _{2} N$ multiplications.

Fast Fourier Transform

- DFT to FFT
- Decimation in Time (DIT) FFT
- Decimation in Frequency (DIF) FFT
- FFT Computation issues
- Goertzel Algorithm
- Bluestein Algorithm

FFT Computation Issues

There are FFT algorithms for lengths different than a power of 2 :

- Radix 4 FFT (N is power of 4),
- Prime Factor Algorithm (PFA FFT):
- It calculates the DFT fast, if its length is a product of prime numbers:

$$
N=p_{1} p_{2} \ldots p_{n} .
$$

- $p_{1}, p_{2}, \ldots, p_{n}$: co-prime integers.

Fast Fourier Transform

- DFT to FFT
- Decimation in Time (DIT) FFT
- Decimation in Frequency (DIF) FFT
- FFT Computation issues
- Goertzel Algorithm
- Bluestein Algorithm

Goertzel Algorithm

The IIR filter that has such an impulse response is given by:

$$
H_{k}(z)=\frac{1}{1-W_{N}^{-k} Z^{-1}}
$$

Therefore $X(k)$ calculation can be done using the IIR filter structure:

Goertzel Algorithm

An improved form of the Goetzel filter is given by the relation:

$$
H_{k}(z)=\frac{1-W_{N}^{k} z^{-1}}{\left(1-W_{N}^{-k} z^{-1}\right)\left(1-W_{N}^{k} z^{-1}\right)}=\frac{1-W_{N}^{k} z^{-1}}{1-2 \cos \left(\frac{2 \pi k}{N}\right) z^{-1}+z^{-2}}
$$

Fast Fourier Transform

- DFT to FFT
- Decimation in Time (DIT) FFT
- Decimation in Frequency (DIF) FFT
- FFT Computation issues
- Goertzel Algorithm
- Bluestein Algorithm

Bluestein Algorithm

If we input signal $x(n) e^{-\frac{i \pi n^{2}}{N}}$ in the filter and multiply the output by $e^{-i \pi N} e^{-i \pi(n-N)^{2} / N}$, then the filter output is the DFT $X(k)$.

Bluestein filter structure.

Bibliography

[OPP2013] A. Oppenheim, A. Willsky, Signals and Systems, Pearson New International, 2013.
[MIT1997] S. K. Mitra, Digital Signal Processing, McGraw-Hill, 1997.
[OPP1999] A.V. Oppenheim, Discrete-time signal processing, Pearson Education India, 1999.
[HAY2007] S. Haykin, B. Van Veen, Signals and systems, John Wiley, 2007.
[LAT2005] B. P. Lathi, Linear Systems and Signals, Oxford University Press, 2005.
[HWE2013] H. Hwei. Schaum's Outline of Signals and Systems, McGraw-Hill, 2013.
[MCC2003] J. McClellan, R. W. Schafer, and M. A. Yoder, Signal Processing, Pearson Education Prentice Hall, 2003.

Bibliography

[PHI2008] C. L. Phillips, J. M. Parr, and E. A. Riskin, Signals, Systems, and Transforms, Pearson Education, 2008.
[PRO2007] J.G. Proakis, D.G. Manolakis, Digital signal processing. PHI Publication, 2007.
[DUT2009] T. Dutoit and F. Marques, Applied Signal Processing. A MATLABBased Proof of Concept. New York, N.Y.: Springer, 2009

Bibliography

[PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.
[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.
[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).
[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.
[NIK2000] N. Nikolaidis and I. Pitas, "3D Image Processing Algorithms", J. Wiley, 2000.

Q \& A

Thank you very much for your attention!
More material in
http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

