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Fast Fourier Transform

Discrete Fourier Transform (DFT) of a signal 𝑥 𝑛 :

𝑋 𝑘 = 

𝑛=0

𝑁−1

𝑥 𝑛 𝑊𝑁
𝑛𝑘 ,

• 𝑁 complex roots of unity: 
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2𝜋
𝛮 , 𝑊𝑁

𝑁 = 1.

Inverse Discrete Fourier Transform (IDFT):

𝑥 𝑛 =
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Fast Fourier Transform

• DFT computation requires complex multiplications and

additions.

• Each complex multiplication requires 4 real multiplications.

• DFT or IDFT computation by definition requires 2 for loops.

• Their computation complexity is 𝑂(𝑁2).

• The most important advantage of DFT is that it can be

calculated very fast using the Fast Fourier Transform

(FFT) algorithm.
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Decimation In Time FFT

First FFT Stage for 𝑁 = 8. Second FFT Stage for 𝑁 = 8.



Decimation In Time FFT
• This method results in the so−called Decimation in Time FFT (DIT

FFT):

• This decimation process is continued, by breaking the calculation of

the DFTs of length 𝑁/2 into 4 DFTs of length 𝑁/4, etc., until we

come to DFTs of length 2:



Decimation In Time FFT

• Each stage consists of 𝑁/2 basic computation structures

called “butterflies”.

• Each butterfly has 2 complex multiplication and two

complex additions.



Decimation In Time FFT

• DIT FFT has 𝑛 = log2𝑁 steps. Each step

has
𝑁

2
butterflies.

• Therefore, it requires a total of:

𝑀 = 2(
𝑁

2
) log2𝑁 = 𝑁𝑙𝑜 𝑔2𝑁 .

complex multiplications and 𝑁𝑙𝑜𝑔2𝑁 complex

additions.

• We already have a reduction in

computational complexity

from Ο(𝑁2) to Ο(𝑁 log2𝑁).



Decimation In Time FFT

DIT FFT 𝑁 = 8.
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Decimation in Frequency FFT 

First DIF FFT stage 𝑁 = 8. Second DIF FFT stage 𝑁 = 8.



Decimation in Frequency 

Final DIF FFT stage 𝑁 = 8.



Decimation in Frequency FFT 

DIF FFT butterfly.

• DIF FFT butterfly requires one complex multiplication

and two complex additions.

• Therefore DIF FFT also requires 𝑁 log2𝑁 complex

additions and (𝑁/2) log2𝑁 multiplications.
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FFT Computation Issues 

There are FFT algorithms for lengths different than a power of 2:

• Radix 4 FFT (𝑁 is power of 4),

• Prime Factor Algorithm (PFA FFT):

• It calculates the DFT fast, if its length is a product of prime

numbers:

𝑁 = 𝑝1𝑝2…𝑝𝑛.

• 𝑝1, 𝑝2 , … , 𝑝𝑛 : co-prime integers.
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Goertzel Algorithm

The IIR filter that has such an impulse response is given by:

𝐻𝑘 𝑧 =
1

1 −𝑊𝑁
−𝑘𝑧−1

.

Τherefore 𝑋 𝑘 calculation can be done using the IIR filter

structure:



Goertzel Algorithm

Αn improved form of the Goetzel filter is given by the relation:

𝐻𝑘 𝑧 =
1 −𝑊𝑁

𝑘𝑧−1

(1 −𝑊𝑁
−𝑘𝑧−1)(1 −𝑊𝑁

𝑘𝑧−1)
=

1 −𝑊𝑁
𝑘𝑧−1

1 − 2 cos
2𝜋𝑘
𝑁

𝑧−1 + 𝑧−2
.
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Bluestein Algorithm

If we input signal 𝑥(𝑛)𝑒−
𝑖𝜋𝑛2

𝑁 in the filter and multiply the output by

𝑒−𝑖𝜋𝑁𝑒−𝑖𝜋 𝑛−𝑁 2/𝑁 , then the filter output is the DFT 𝑋(𝑘).

Bluestein filter structure.
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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