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Fast 3D Convolution algorithms @ML

« 3D linear and cyclic convolutions

« Fast 3D convolutions by using FFTs
» Block-based methods

« Optimal Winograd 3D convolutions
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Introduction @M"

- Convolution plays a very important role in image/video
processing and analysis, machine learning etc.

« Convolutional neural networks (CNNs) are based on the
convolution (they form the first layers).

« Computationally expensive, O0(N°®) in 3D.

« There is a need for efficient convolution algorithms.
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3D Signals and Systems @M"

« A 3D signal is a mapping of the form:
f: R3 >R
« The discrete version is:
fr7Z° >R
* For example:
« Digital video signal: f(n,,n,,n3) = f;(n;Ax, n,Ay, n3At)
» 3D volumetric image: f(ny,n,,n3) = f(n;Ax,n,Ay, n3Az)
« Ax,Ay, Az are spatial sampling intervals and At is the
temporal sampling interval.
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3D Signals and Systems @M"

Y A 7‘%

X

Spatiotemporal video signal 2D slice of a 3D MRI image [WIK-MRI]
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3D Linear Convolution @M"

For a 3D LSI system with impulse response h, the input x and
output y are related by the 3D linear convolution:

y(ny,np,n3) = x(nyg, Ny, N3) *x*x h(ng, ny, n3)

z 2 z x(kq, ko, ka)h(ng — ky,n, — ko, n3 — k3)

k1=—oo k2=—oo k3=—oo

It is commutative: x xxx h = h **x* x.
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3D Linear Convolution @M"

If the system’s impulse response h is of finite size Ny, X Ny, X
Ny,, the system is called Finite Impulse Response (FIR)

system and is described by:

y(ny,ny,n3) = x(ng, Nz, ng) *xx h(ny,ny, ns)

Np,=1Np,—1Npy;—1

\ Z 2 Z h(ky, ky, ka)x(ng — ky,ny — ko — ks)

k1=0 k2=0 k3=0
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3D Linear Convolution @M"

If the input signal x(nq, ny, n3) is also finite, N, X N,, X N,., the
resulting output signal y = x **x h has size:

(Ny, +Np, — 1) X (Ny,+Np, — 1) X (Ny, + Np, — 1).
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3D Linear Convolution VML

k=0 vvs 0| 0 |h@)N(L)| O | O |x

X(0-k) (xxh)(0)
0 | 0 [X0)|X()|X(2)] O |=es ——— ««« [X(2)|X(1)|X(0)| O 0 0 | +es ———3 Y(0) = h(0)x(0)

X(1-k) (X*kh)(1)
— e O [X(@)XW[X0) O | 0 | ess ———=Y¥(1) = h(0)X(1) + h(1)x(0)

X(2-k) (Xxh)(2)
con | 00 [X(2)[X()X0)| 0 svs ———— Y(2) = h(0)X(2) + h(1)X(1)

X(3-k) (x*h)(3)

¥(3) = h(1)x(2)

O | 0 1 0 [X(2)]X(1)|X(0)| """

Example of 1D linear convolution: The signals x(n) and h(n) of finite size N, = 3 and N;, = 2
respectively, and the output signal y(n) is of size N, + N;, — 1 = 4.
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3D Linear Convolution @M"

W

An illustration of 3D convolution with a kernel of size 3 x 3 x 3 (from [DON2020]).
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3D Linear Convolution

VML
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{aJ 2D convolution {b] 2D convolution on multiple frames
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{C} 3D convelution

2D convolution vs 3D convolution (from [TRA2015]).
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3D Cyclic Convolution @M"

The 3D cyclic convolution is defined as:

y(ny,ny,n3) = x(ny,ny,n3) ®®® h(ng,ny, ng)

Ni—1N,—1N3-1

— z Z 2 x(kq, ko, k3)h ((Tl1 — k1)N1» (ny — kz)Nz» (ng — k3)N3)

kl_—'O kz =0 k3=0

where (n)y denotes nmod N and is the cyclic shift. We use
the symbol ® to distinguish it from the linear convolution.
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3D Cyclic Convolution

9@

3D linear convolution can be embedded in 3D cyclic
convolution by zero-padding the x(nq,n, ns) and
h(n{,n,,n3) in each dimension (see picture on next slide).
Performing cyclic convolution on these padded signals is
equivalent to performing linear convolution on the original
signals.

Cyclic convolutions are useful because they can be
computed using DFT (via FFT algorithms) and other fast
algorithms such as Winograd convolution algorithms.

Artificial Intelligen
Information An Iy Lb



3D Cyclic Convolution
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VML

y(0) = h(0)x(0)

M,. y(1) = h(0)x(1) + h(1)x(0)

M}- y(2) = h(0)X(2) + h(1)X(1)
. w Y(3) = h(1)x(2)

Example of 1D cyclic convolution which is equivalent to linear convolution. The original signals
x(n) and h(n) are of size N,, = 3 and N;, = 2 respectively. By zero-padding them to the same
size N, + N, — 1 = 4, the resulting output signal y(n) (of size 4) is the same as y(n) obtained

from linear convolution of the original signals.
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3D Z-transform @M"

« The 3D Z-transform of a N; X N, X N5 signal x is defined

as.
Ni—1N,—1 N3—1

’ ’ —n, —-Nn, —n
X(Zl;ZZ:ZB)Z Z Z 2 X(Tll,nz,n3)Z1 1Zz 2Z3 >

Tl1=0 n2=0 Tl3=0
where z,, z,, z3 are complex variables.

- |t can be considered as a polynomial of three variables
: . : . N{—=1 N,—1 N3-—1
Z1, 25, Z3, by multiplying it by the monomial z;* "z,? "z;° .
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3D Z-transform @M"

« An important property is that the 3D linear convolution is
equivalent to the polynomial products in the z-domain:
y(ny,ny,n3) = x(ng, Ny, n3) *xx h(ng, ny,n3)
© Y(24,23,23) = X(24, 22, 23)H (24, 25, Z3)

« Similarly for the 3D cyclic convolution:
y(ny,ny,n3) = x(ny,n,13) GO h(ng, ny,n3)
© Y24, 25, 23) = X(21,23,23)H(24,23,23) mod (Zivl_l): (Zévz —1), (Zévg—l)
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3D Discrete Fourier Transform @M"

The 3D Discrete Fourier Transform (DFT) of a 3D N; X N, X
N; signal x is defined as:

N;i—1N,—1 N3—1

X(kli kz:kg) — z 2 2 X(Tll,nz,n3)Wn1k1Wn2k2Wn3k3

Tll—O le—O n3—0

where Wy, = e /2/Ni i =123, are Ni-th primitive roots of
unity.
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3D Discrete Fourier Transform @M"

« The convolution theorem states that the cyclic convolution
in Z3 is equivalent to the multiplication in the DFT domain:

y(n1; le, Tl3) — X(Tll, nz, n3) ®®® h(nli nZi n3)
& Y(ky, ky, k3) = X(kq, ka, k3) H(kq, ko, k3)
« Thus, the 3D cyclic convolution can be computed by DFT:

x(n1,n2,n3) X(k1,k2,k3) Y(k1,k2,k3) y(ni,n2,n3)
> DFT > IDFT >

h(ni,n2,n3) H(k1, ko, k
= DFT (k1,k2,k3)
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3D Fast Fourier Transform
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Decomposition of 3D FFT into 1D FFTs (from [HEI2005]).
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3D Fast Fourier Transform @M"

 There are many variants of 1D FFT algorithms. The best

known is the Cooley-Tuckey radix-2 decimation in time
(DIT) FFT algorithm.

« |t uses the “divide and conquer’ approach by recursively
breaking down the 1D DFT of any composite size N = NN,
into N; smaller DFTs of sizes N,.
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3D Fast Fourier Transform @M"

stage 1 stage 2 stage 3
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Data flow diagram of 1D radix-2 FFT algorithm for N=8.
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3D Fast Fourier Transform @M"

The number of additions and multiplications required for
computing the 3D FFT by using 1D radix-2 FFTs is [PIT2000]:

A = NN, N3 log,(N;N;N3)

NN, N3
M = > log, (N1 N, N3)

This is much better as compared to (N, N,N5)? multiplications
required for the direct computation of 3D DFT.
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Block convolutions

« Computation of convolution by DFT methods (using FFT
algorithms) for signals of large sizes can be very memory
consuming.

« To overcome this problem, block methods can be used.

 Limiting the size of blocks limits the amount of storage
required while maintaining the efficiency of the procedure
[DUD1984].

 There are two block-based methods: overlap-add and
overlap-save.
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Overlap-add method

VML

x;(n) x3(n) X3(n)
| B Ny~ 1
yi(n)
: B Ny 1
ya(n)
: B Ny 1
ys(n)

Overlap-add method for convolution in 1D. The input signal x(n) is partitioned into three blocks
x1(n), x,(m) and x3(n), each of length B. The impulse response h(n) is of length N, and the output
blocks y;(n) = (x; * h)(n), i = 1,2,3, are of length B + N, — 1 each. There are N, — 1 overlapping
points between output blocks y;(n) and y;,;(n). The output signal y(n) is formed by adding all the

overlapping output blocks y;(n).
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Overlap-save method @M"

« The overlap-save method is an alternative block method.
« The 3D output is partitioned into B; X B, X B3 non-
overlapping blocks:

y(ny,ny,n3) = Z 2 ZYijk(nl»nz:nB)
i K

« The corresponding 3D input section x;j,(ny,n,,n3) of size
B; X B, x B is extended to x;;, (nq,n,, n3) of size (By+Ny, —
1))( (Bz'l'th —1)X(B3 +Nh3 _1)
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Overlap-save method @ML

+ The 3D cyclic convolution y;; = x;; ®®® h can be
efficiently computed by FFT of size (B;+Np, —1) X (B, +
Np, — 1) X (B3 + Ny, — 1).

» Each of the resulting blocks y;;; will contain a sub-block of

size B; X B, X B; which is identical to the desired linear
convolution y;, = x;j, *** h (which are added to form y).

» In both block methods the choice of block size affects the
amount of storage needed and the amount of computations.
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Winograd convolution algorithm @ML

« We saw that the 3D cyclic convolution can be efficiently
computed by 1D FFTs.

* When the length of the convolution kernel is small, the best
convolution algorithms, as measured by the number of
required multiplications, are the Winograd convolution
algorithms [BLA2010].

« The Winograd convolution algorithms are based on the
Chinese Remainder Theorem (CRT) for polynomials.
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1D Winograd convolution @M"

For simplicity, we first present the 1D Winograd convolution
algorithm and later extend it to 3D.

The 1D cyclic convolution of length N can be expressed in
terms of polynomials in z-domain as:

Y(z) = X(z2)H(z) mod z" —

” Attificial Intelligen
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1D Winograd convolution @M"

« The Winograd convolution algorithm can be expressed
compactly in the following matrix notation (bilinear form):
y = C(Ax®Bh)
where (© denotes element-wise product.
« Matrices A and B typically have elements —1,0, 1. Therefore
products Ax and Bh represent additions instead of
multiplications.
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3D Winograd convolution @M"

« The Winograd convolution can be extended to three
dimensions [PIT1987].

« The 3D cyclic convolution can be expressed as:

Y (24,25, 23) = X(24, 23, 23) H(24, 23, 23) mod Py (z4), P;(22), P3(23),

where P;(z;) = (zl{v" — 1), i=1,2,3.
« Each P;(z;) can be factorized into v; cyclotomic polynomials:
e

Pi(z;) = l_lpiji(zi); degip;j,} = Nij,, 1 = 1,2,3
Ji=1
@ @F =N .



3D Winograd convolution @M"

« The number of multiplications of this 3D algorithm is:
(2N; —v1) (2N, — v5)(2N3 — v3),

i.e., the computational complexity is of order O(N3).

« However, this is not the minimal computational complexity,
because there can exist further factorizations such as each

p1j, (z1) over Q[z,]/p,j,(22) or Qlz3]/p3j,(23) etc.
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3D Winograd convolution @M"

It can be shown that the optimal algorithm for 3D cyclic
convolution exists and requires the following minimum number

of multiplications [PIT1987]

= Z > Y M

=1 j,=1 j3=

where
Mj1j2j3 = min {(ZNljl — 1)(2N2j2 = szz)(2N3j3 = k3j3)’
(2Nyj, = 1)(2Nyj, = ke, )(2Nsj, — ks, ),

(2N3f3 — 1)(2Nlj1 o klh)(Zszz = kzjz)}
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3D Winograd convolution @M"

« Such optimal algorithms can be expressed in the matrix
form that we saw for 1D Winograd convolution:

y = RBT(Ax®CTRh)
which then can be computed by using linear algebra
libraries such as BLAS and cuBLAS.

» However, finding the matrices A, B, C can be a tedious task
and has to be done by hand for a desired convolution size.
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Winograd 3D cyclic convolutions @ML

- Winograd 3D convolution algorithms or é\%

fast 3D filtering v
/ - hy,
y = C(AX®Bh). <,
: \\
% E \

* GEneral Matrix Multiplication (GEMM) i‘i.'?: A
BLAS or cuBLAS routines can be :
used.

|| Artificial Intelligen
Informatio AIy Lb




Bibliography @M"

PIT2017] I. Pitas, “Digital video processing and analysis” , China Machine Press, 2017
(in Chinese).

PIT2013] I. Pitas, “Digital Video and Television” , Createspace/Amazon, 2013.

PIT2021] I. Pitas, “Computer vision”, Createspace/Amazon, in press.

NIK2000] N. Nikolaidis and I. Pitas, “3D Image Processing Algorithms”, J. Wiley, 2000.

[PIT2000] I. Pitas, “Digital Image Processing Algorithms and Applications”, J. Wiley,
2000.

P1T1987] I. Pitas, M. Strintzis, “Multidimensional cyclic convolution algorithms with

minimal multiplicative complexity”, IEEE transactions on acoustics, speech, and signal

processing, vol. 35, no. 3, pp. 384-390, 1987.

| | Artificial Intelligence & 62
Information Analysis Lab



36

-
e
\\&

(vmL

Q&A

Thank you very much for your attention!

More material Iin
http://icarus.csd.auth.gr/cvml-web-lecture-series/ /
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