
P. Bassia, Prof. Ioannis Pitas

Aristotle University of Thessaloniki

pitas@csd.auth.gr

www.aiia.csd.auth.gr
Version 4.2

Fast 2D Convolution

Algorithms

summary

Outline

• 2D linear systems

• 2D convolutions
Discrete-time 2D Systems

Linear & Cyclic 2D convolutions

2D Discrete Fourier Transform, 2D Fast Fourier Transform

• Other convolution algorithms
Winograd algorithm

Block methods

• Applications in Machine Learning
Convolutional neural networks

Convolution and correlation

2D convolution applications:

• Machine Learning (Convolutional neural networks)

• Image processing

2D correlation applications:

• Feature matching

• Template matching

• Object detection and tracking

2D Discrete Systems

2D system:

• It transforms a 2D discrete input signal 𝑥(𝑛1, 𝑛2) into a 2D

discrete-time output signal 𝑦 𝑛1, 𝑛2 :
𝑦 𝑛1, 𝑛2 = 𝑇 𝑥 𝑛1, 𝑛2 .

2D Discrete Systems

• A Linear Shift Invariant (LSI) system is described by a 2D

convolution of input x with a convolutional kernel ℎ:

𝑦 𝑘1, 𝑘2 = ℎ 𝑘1, 𝑘2 ∗∗ 𝑥 𝑘1, 𝑘2 =

𝑖1

𝑖2

ℎ 𝑖1, 𝑖2 𝑥 𝑘1 − 𝑖1, 𝑘2 − 𝑖2 .

• Input x has typically limited region of support (size), e.g., it can be an

image of 𝑁1 × 𝑁2 pixels.

• Convolutional kernel ℎ may have limited or finite region of support

𝑀1 × 𝑀2 pixels.

6

Visualization of 2D convolution calculation.

2D Discrete Systems

2D Discrete Systems

• Finite impulse response (FIR) systems:

ℎ(𝑛1, 𝑛2) is zero outside some filter mask (region) 𝑀1 × 𝑀2,

0 ≤ 𝑛1 < 𝑀1, 0 ≤ 𝑛2 < 𝑀2.

• FIR filters are described by a 2D linear convolution with

convolutional kernel ℎ of size 𝑀1 ×𝑀2 is given by:

𝑦 𝑘1, 𝑘2 = ℎ 𝑘1, 𝑘2 ∗∗ 𝑥 𝑘1, 𝑘2 =

𝑖1=0

𝑀1−1

𝑖2=0

𝑀2−1

ℎ 𝑖1, 𝑖2 𝑥 𝑘1 − 𝑖1, 𝑘2 − 𝑖2 .

• Usually discrete systems without feedback are FIR ones.

2D Discrete Systems

FIR filter example

• The moving average filter 𝑀1 × 𝑀2,

𝑀𝑖 = 2𝜈𝑖 + 1:

𝑦 𝑛1, 𝑛2

=
1

𝑀1𝑀2

𝑘1=−𝑣1

𝑣1

𝑘2=−𝑣2

𝑣2

𝑥 𝑛1 − 𝑘1, 𝑛2 − 𝑘2 .

3 × 3 moving average filter.

2D Discrete Systems

a) Image Lena; b) 5 × 5 moving average filter output.

2D Discrete Systems

Animation of 2D Convolution with input padding.

2D Discrete Systems

Example of 2D Convolution with input padding.

2D Discrete Systems

• A 2D linear convolution of convolutional kernel ℎ of size 𝑀1 ×𝑀2

operating on an image 𝑥 of size 𝑁1 × 𝑁2 of size produces an

output image 𝑦:

• of size 𝑀1𝑀2 using zero padding

• Complexity: 𝑁1𝑁2𝑀1𝑀2 multiplications.

• of size (𝑁1−𝑀1 + 1) (𝑁2 −𝑀2+1), without input image border

padding.

• Complexity: (𝑁1−𝑀1 + 1) (𝑁2 −𝑀2+1) 𝑀1𝑀2 multiplications.

• In both cases complexity is 𝑂 𝑁4 , if 𝑁1, 𝑁2, 𝑀1′𝑀2 are of order N.

2D Discrete Systems
A 2D FIR filter output can also be described as inner product:

𝑦 𝑛1, 𝑛2 =

𝑘1=0

𝑀1−1

𝑘2=0

𝑀2−1

ℎ 𝑘1, 𝑘2 𝑥(𝑘1 − 𝑛1, 𝑘2 − 𝑛2) = 𝐡𝑇𝐱 𝑛1, 𝑛2 .

• 𝐡 = ℎ 0,0 , … , ℎ 𝑀1 − 1,𝑀2 − 1 𝑇: template image vector.

• 𝐱 𝑛1, 𝑛2 = [𝑥 𝑛1, 𝑛2 , … , 𝑥 𝑛1 −𝑀1 + 1, 𝑛2 −𝑀2 + 1]𝛵: local

neighborhood (window) image vector.

• GPU computing and fast linear algebra libraries (e.g., cuBLAS)

can be used for 2D convolution and correlation computations.

2D Discrete Systems

IIR Edge Detector output.

2D linear correlation
2D correlation of template image ℎ and input image 𝑥 (inner

product):

𝑟ℎ𝑥 𝑛1, 𝑛2 =

𝑘1=0

𝑁1−1

𝑘2=0

𝑁2−1

ℎ 𝑘1, 𝑘2 𝑥(𝑛1 + 𝑘1, 𝑛2 + 𝑘2) = 𝐡𝑇𝐱 𝑛1, 𝑛2 .

• 𝐡 = ℎ 0,0 , … , ℎ 𝑁1 − 1,𝑁2 − 1 𝑇: template image vector.

• 𝐱 𝑛1, 𝑛2 = [𝑥 𝑛1, 𝑛2 , … , 𝑥 𝑛1 +𝑁1 − 1, 𝑛2 +𝑁2 − 1]𝛵: local

neighborhood (window) image vector.

2D linear and cyclic convolutions

• Two-dimensional linear convolution with convolutional kernel ℎ of

size 𝑀1 ×𝑀2 is given by:

𝑦 𝑘1, 𝑘2 = ℎ 𝑘1, 𝑘2 ∗∗ 𝑥 𝑘1, 𝑘2 =

𝑖1=0

𝑀1−1

𝑖2=0

𝑀2−1

ℎ 𝑖1, 𝑖2 𝑥 𝑘1 − 𝑖1, 𝑘2 − 𝑖2 .

• Its two-dimensional cyclic convolution counterpart of support 𝑁1 ×
𝑁2 is defined as:

𝑦 𝑘1, 𝑘2 = ℎ 𝑘1, 𝑘2 ⊛⊛𝑥 𝑘1, 𝑘2 =

𝑖1=0

𝑁1−1

𝑖2

𝑁2−1

ℎ 𝑖1, 𝑖2 𝑥 𝑘1 − 𝑖1 𝑁1 , 𝑘2 − 𝑖2 𝑁2 .

2D Discrete Fourier Transform

𝑋(𝑘1, 𝑘2) =

𝑛1=0

𝑁1−1

𝑛2=0

𝑁2−1

𝑥(𝑛1, 𝑛2)𝑊𝑁1

𝑛1𝑘1𝑊𝑁2

𝑛2𝑘2

𝑥 𝑛1, 𝑛2 =
1

𝑁1𝑁2

𝑘1=0

𝑁1−1

𝑘2=0

𝑁2−1

𝑋 𝑘1, 𝑘2 𝑊𝑁1

−𝑛1𝑘1𝑊𝑁2

−𝑛2𝑘2 .

• Complex roots of unity:

𝑊𝑁𝑖
= exp −𝑖

2𝜋

𝑁𝑖
, 𝑖 = 1,2.

2D Discrete Fourier Transform

• Cyclic spatial translation (shift):

• Frequency shift:

𝑦(𝑛1, 𝑛2) = 𝑥(((𝑛1 −𝑚1))𝑁1 , ((𝑛2 −𝑚2))𝑁2) ↔

𝑌(𝑘1, 𝑘2) = 𝑊𝑁1

𝑚1𝑘1𝑊𝑁2

𝑚2𝑘2𝑋(𝑘1, 𝑘2),

((𝑛))𝑁 =
Δ
𝑛 mod 𝑁.

𝑥(𝑛1, 𝑛2) = 𝑊𝑁1

−𝑛1𝑙1𝑊𝑁2

−𝑛2𝑙2𝑤(𝑛1, 𝑛2) ↔

𝑋(𝑘1, 𝑘2) = 𝑋(((𝑘1 − 𝑙1))𝑁1 , ((𝑘2 − 𝑙2))𝑁2)

19

Circular shift of a 2D sequence.

2D Discrete Fourier Transform

2D Discrete Fourier Transform

• Cyclic Convolution Theorem:

𝑦 𝑛1, 𝑛2 = 𝑥 𝑛1, 𝑛2 ⊛⊛ℎ 𝑛1, 𝑛2 ,
𝑌 𝑘1, 𝑘2 = 𝑋 𝑘1, 𝑘2 𝐻 𝑘1, 𝑘2 .

• Cyclic Correlation:

𝑟ℎ𝑥 𝑛1, 𝑛2 = ℎ 𝑛1, 𝑛2 ⊛⊛𝑥 −𝑛1, −𝑛2 ,

𝑅ℎ𝑥 𝑘1, 𝑘2 = 𝐻∗ 𝑘1, 𝑘2 𝑋 𝑘1, 𝑘2 .

21

2D Cyclic Convolution

Calculation with DFT

2D IDFT y

2D DFT

2D DFT

𝑥

ℎ

2D convolution calculation using the DFTs.

22

Zero padding for embedding a 2D linear convolution to a cyclic one.

2D Linear and Circular

Convolution

2D Linear Convolution with DFT

• Compute the 𝑁1 × 𝑁2 2D DFTs of 𝑥𝑝(𝑛1, 𝑛2) and ℎ𝑝(𝑛1, 𝑛2);

• Compute 𝑌𝑝(𝑘1, 𝑘2) as the product of 𝑋𝑝(𝑘1, 𝑘2) and 𝐻𝑝(𝑘1, 𝑘2);

• Compute 𝑦𝑝(𝑛1, 𝑛2) as the inverse 2D DFT of 𝑌𝑝(𝑘1, 𝑘2);

• The result is the region [0, 𝐿1) × [0, 𝐿2) of 𝑦𝑝(𝑛1, 𝑛2).

• 2D DFTs are calculated fast through 2D Fast Fourier

Transform (FFT) algorithms.

• Typically, 2D DFT length is chosen to be a power of 2:

𝐿𝑖 = 2𝑙𝑖𝑁𝑖 + 𝑀𝑖 − 1, 𝑖 = 1, 2.

Convolutions using 2D FFT

• Memory requirements are × 8 for direct computation and × 16

using the FFT.

• Direct approach is faster for a small filter 𝑀1 ×𝑀2when:

𝑀1𝑀2 6log2(𝑁1𝑁2) + 4.

Convolutions using 2D FFT

• For larger filters (close to the image size), computational

complexity is:

• 𝑂(𝑘𝑁4) for the direct method.

• 𝑂 𝑘𝑁2 log2𝑁 using 2D FFT.

25

Computational complexity of 2D FIR filters.

Winograd 2D cyclic convolutions

• Winograd 2D convolution

algorithms or fast 2D filtering:

𝐲 = 𝐂 𝐀𝐱⨂𝐁𝐡 .

• GEneral Matrix Multiplication

(GEMM) BLAS or cuBLAS routines

can be used.

Winograd 2D cyclic convolutions

• Alternative Winograd algorithm formulation:

𝐲 = 𝐑𝐁𝑇 𝐀𝐱⨂𝐂𝑇𝐑𝐡 .

• Matrices 𝐀, 𝐁 typically have elements 0,+1,−1.

• Multiplications 𝐂𝑇𝐑𝐡, 𝐑𝐁𝑇𝐲′ are done only by

additions/subtractions.

• 𝐑 is an 𝑁 × 𝑁 permutation matrix.

• 𝐑h can be precomputed.

• It has theoretically minimal computational complexity.

Winograd 3 × 3 cyclic

convolution

• 2D 3 × 3 cyclic convolution definition as 2D polynomial product:

𝑌 𝑧1, 𝑧2 = 𝐻 𝑧1, 𝑧2 𝑋 𝑧1, 𝑧2 mod (𝑧1
3− 1), (𝑧2

3−1),

where:

𝑋 𝑧1, 𝑧2 = 𝑥00 + 𝑥01𝑧2 + 𝑥02𝑧2
2 + 𝑥10𝑧1 + 𝑥11𝑧1𝑧2

+𝑥12𝑧1𝑧2
2 + 𝑥20𝑧1

2 + 𝑥21𝑧1
2𝑧2 + 𝑥22𝑧1

2𝑧2
2
,

𝐻 𝑧1, 𝑧2 = ℎ00 + ℎ01𝑧2 + ℎ02𝑧2
2 + ℎ10𝑧1 + ℎ11𝑧1𝑧2

+ℎ12𝑧1𝑧2
2 + ℎ20𝑧1

2 + ℎ21𝑧1
2𝑧2 + ℎ22𝑧1

2𝑧2
2
.

Winograd 3 × 3 cyclic

convolution

Factorization of:

𝑧3 − 1 = (𝑧 − 1)(𝑧2 + 𝑧 + 1)

can be used to decompose 𝑋(𝑧1, 𝑧2) as follows:

• 𝑋1 𝑧1, 𝑧2 = 𝑋 𝑧1, 𝑧2 mod 𝑧1 − 1 , 𝑧1 − 1 ,
• 𝑋2 𝑧1, 𝑧2 = 𝑋 𝑧1, 𝑧2 mod 𝑧1 − 1 , 𝑧2

2 + 𝑧2 + 1 ,
• 𝑋3 𝑧1, 𝑧2 = 𝑋 𝑧1, 𝑧2 mod 𝑧2 − 1 , 𝑧1

2 + 𝑧1 + 1 ,
• 𝑋4 𝑧1, 𝑧2

= 𝑋 𝑧1, 𝑧2 mod 𝑧1
2 + 𝑧1 + 1 , 𝑧2

2 + 𝑧2 + 1 .

Winograd 3 × 3 cyclic

convolution

30

Arrays 𝐀,𝐁 of Winograd 3 × 3 cyclic convolution.

Winograd 3 × 3 cyclic

convolution

31

Array 𝐂 of Winograd 3 × 3 Cyclic Convolution.

Winograd 3 × 3 cyclic

convolution

32

Visualization of Array 𝐀 of Winograd 3 × 3 cyclic convolution.

Winograd 3 × 3 cyclic

convolution

33

• The original 117+13 additions

were reduced to 44 additions

(only 36,6% of the original

number).

• Only 9 out of the 13

multiplications are needed

because only the last one

output element is kept.

Reducing additions in 𝐀𝐱 product of Winograd 3 × 3 cyclic convolution.

Winograd 4 × 4 cyclic

convolution

34Arrays 𝐀,𝐁 of Winograd 4 × 4 cyclic convolution.

Winograd 4 × 4 cyclic

convolution

35Array 𝐂 of Winograd 4 × 4 cyclic convolution.

Winograd 4 × 4 cyclic

convolution

36

• Reduction of the total number of additions of a Winograd

4 × 4 Cyclic Convolution to 26.6% of their original

number, using precalculated sums.

Winograd 4 × 4 cyclic

convolution

37

Visualization of Array 𝐀 of Winograd 4 × 4 cyclic convolution.

Winograd 4 × 4 cyclic

convolution

38

• Reducing additions in 𝐀𝐱
product of Winograd 3 ×
3 cyclic convolution.

• For illustration simplicity,

only 13 of 22 𝐀𝐱 product

entries are shown.

Nested convolutions

• Winograd algorithms exist for relatively short convolution

lengths.

• Use of efficient short-length convolution algorithms

iteratively to build long convolutions

• Does not achieve minimal multiplication complexity

• Good balance between multiplications and additions

Decomposition:

• 2D convolution : 𝑁 × 𝑁 = 𝑁1𝑁2 × 𝑁1𝑁2, for 𝑁1, 𝑁2 coprime

integers 𝑁1, 𝑁2 = 1, can be implemented using nested

𝑁1 × 𝑁1, 𝑁2 × 𝑁2 convolutions.

Block-based 2D convolution

2D overlap-add algorithm is based on the distributive property of

convolution:

• An image 𝑥 𝑖1, 𝑖2 can be divided into 𝐾1 × 𝐾2 non-overlapping

subsequences, having dimensions 𝑁𝐵1 × 𝑁𝐵2 each:

𝑥𝑘1𝑘2 𝑖1, 𝑖2 = ቊ
𝑥 𝑖1, 𝑖2 𝑘1𝑁𝐵1 ≤ 𝑖1 < 𝑘1 + 1 𝑁𝐵1, 𝑘2𝑁𝐵2 ≤ 𝑖2 < 𝑘2 + 1 𝑁𝐵2

0 otherwise.

• The linear convolution output 𝑦 𝑛1, 𝑛2 is the sum of the

convolution outputs produced by the input sequence blocks:

𝑦 𝑖1, 𝑖2 = 𝑥 𝑖1, 𝑖2 ∗∗ ℎ 𝑖1, 𝑖2 =

𝑘1=1

𝐾1

𝑘2=1

𝐾2

𝑥𝑘1𝑘2(𝑖1, 𝑖2) ∗∗ ℎ 𝑖1, 𝑖2 =

𝑘1=1

𝐾1

𝑘2=1

𝐾2

𝑦𝑘1𝑘2 𝑖1, 𝑖2 .

Overlap-add algorithm

Overlap-add algorithm.

Overlap-save algorithm
• Every 𝑥𝑖𝑗 item is non-zero, therefore only the inner 𝑁1 × 𝑁2 part

is correct;

• Addition all the ‘trimmed’ boxes to get the output.

• Block-based algorithms can be easily parallelized.

• They are suitable for GPU computing.

Convolutional Neural Networks

Convolutional Neural Networks (CNN):

• employ image convolutions in the first layers.

• They may employ fully connected MLPs in the last layers.

Basic CNN structure.

Convolutional Neural Networks

Convolutional Layers employ:

• A 𝑑𝑜𝑢𝑡 -dimensional feature descriptor vector

𝐳𝑖𝑗 = [𝑧𝑖𝑗𝑜, 𝑜 = 1,… , 𝑑out]
𝑇 holds all output

features for a feature map location 𝑖, 𝑗 𝑇.

• The convolution kernel is described by a 4D

tensor:

𝐖 = [𝑤𝑘1𝑘2𝑟𝑜: 𝑘1= 1, . . . , 𝑀1 , 𝑘2 = 1,… ,𝑀2, 𝑟 =

1,… , 𝑑𝑖𝑛 , 𝑜 = 1,… , 𝑑𝑜𝑢𝑡] ∈ ℝ𝑀1×𝑀2×𝑑𝑖𝑛×𝑑𝑜𝑢𝑡.

Convolutional Neural Networks

• For a convolutional layer 𝑙 with an activation function 𝑓(𝑙)(∙),

multiple incoming features 𝑑𝑖𝑛 and one single output feature 𝑜:

𝑎𝑖𝑗𝑜
𝑙
= 𝑓 𝑙

𝑟=1

𝑑𝑖𝑛

𝑘1=−𝜈1
𝑙

𝜈1
𝑙

𝑘2=−𝜈2
𝑙

𝜈2
𝑙

𝑤𝑘1𝑘2𝑟𝑜
𝑙

𝑎(𝑖−𝑘1)(𝑗−𝑘2)𝑟
𝑙−1

+ 𝑏𝑜
𝑙

.

• The input to the first convolutional layer is a multichannel

image 𝑥𝑖𝑗𝑟:

𝑎𝑖𝑗𝑟
0
= 𝑥𝑖𝑗𝑟 .

Deep Learning

Frameworks

Intel Neon

• Neon is a modern deep learning framework created by

Nervana Systems.

• Implemented in Python, while Nervana Caffe framework is

written in C and C++.

• Impressively fast compared to other frameworks.

• Image processing oriented (not general purpose enough).

46

2D Convolution Routines

cuDNN convolution algorithms:
• DIRECT

• CUDNN-CONVOLUTION-FWD-ALGO-DIRECT;

• FFT

• CUDNN-CONVOLUTION-FWD-ALGO-FFT;

• CUDNN-CONVOLUTION-FWD-ALGO-FFT-TILING;

• GEMM

• CUDNN-CONVOLUTION-FWD-ALGO-GEMM;

• CUDNN-CONVOLUTION-FWD-ALGO-IMPLICIT-GEMM;

• CUDNN-CONVOLUTION-FWD-ALGO-IMPLICIT-PRECOMP-GEMM;

• WINOGRAD

• CUDNN-CONVOLUTION-FWD-ALGO-WINOGRAD;

• CUDNN-CONVOLUTION-FWD-ALGO-WINOGRAD-NONFUSED;

47

2D Convolution Routines

48

Data transformation performed for the GEMM convolution approach.

2D Convolution Routines
Fastest cuDNN algorithm

• The preferred cuDNN algorithm can be chosen either by

the developer or by cuDNN parameter CUDNN-

CONVOLUTION-FWD-PREFER-FASTEST, based on input

and kernel size.

• GEMM algorithms (IMPLICIT GEMM in particular) are the

fastest cuDNN algorithms for tested input and kernel size.

• GEMM-based algorithms transform the inputs and filter to be

able to exploit high-performance matrix-matrix multiply

operations.

49

2D Convolution Routines
cuDNN convolution parameters:

• 3 × 3 convolution kernel

• 512 × 512 pixel input image

Winograd 𝟒 × 𝟒 cyclic convolution parameters:

• Same image and convolution kernel size, as in cuDNN

convolution.

• Input image blocks (tiles)

• 65536 2 × 2 input image tiles

• 4 × 4 cyclic convolution.

• Overlap-Save block-based convolution implementation.

2D Convolution Routines

51

• Speed Comparisons of various 2D Convolution Routines.

• Winograd 4 × 4 cyclic convolution routine performs 𝟒. 𝟕𝟕 ×
faster than the faster cuDNN convolution and 𝟏𝟏. 𝟑𝟑 × faster

than the corresponding cuDNN Winograd linear convolution

routine.

• GEMM-0 is the fastest cuDNN algorithm.

• Winograd-6 is based on Linear Winograd convolution algorithm.

2D Convolution Routines

52

GTX1060 Visual Studio IDE implementation

• Performance Comparison on GTX1060 GPU (1,280

CUDA cores) between Winograd 4 × 4 cyclic convolution

and cuDNN Library algorithms for over 1,000 runs.
Execution

time (ms)

Number of runs

2D Convolution Routines

53

GTX1080 Eclipse IDE

• Performance Comparison on GTX1080 GPU (2,560

CUDA cores) over 1,000 runs between a) Winograd 4 ×
4 cyclic convolution and b) cuDNN Library algorithm

GEMM-0 which is the fastest cuDNN algorithm in this

case.

Execution time

(ms)

Bibliography
[PIT2021] I. Pitas, “Computer vision”, Createspace/Amazon, in press.
[PIT2017] I. Pitas, “Digital video processing and analysis” , China Machine Press, 2017

(in Chinese).
[PIT2013] I. Pitas, “Digital Video and Television” , Createspace/Amazon, 2013.
[NIK2000] N. Nikolaidis and I. Pitas, “3D Image Processing Algorithms”, J. Wiley, 2000.
[PIT2000] I. Pitas, “Digital Image Processing Algorithms and Applications”, J. Wiley,

2000.

62

Q & A

Thank you very much for your attention!

More material in

http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas

pitas@csd.auth.gr

55

