Fast 2D Convolution Algorithms summary

(VML

P. Bassia, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 4.2

Outline

- 2D linear systems
- 2D convolutions

Discrete-time 2D Systems Linear & Cyclic 2D convolutions 2D Discrete Fourier Transform, 2D Fast Fourier Transform

Other convolution algorithms

Winograd algorithm

Block methods

Applications in Machine Learning Convolutional neural networks

Convolution and correlation

2D convolution applications:

- Machine Learning (Convolutional neural networks)
- Image processing

2D correlation applications:

- Feature matching
- Template matching
- Object detection and tracking

2D system:

• It transforms a 2D discrete input signal $x(n_1, n_2)$ into a 2D discrete-time output signal $y(n_1, n_2)$:

Artificial Intelligence & Information Analysis Lab

 $\times M_2$ pixels.

• A *Linear Shift Invariant* (*LSI*) system is described by a 2D convolution of input *x* with a convolutional kernel *h*:

$$y(k_1, k_2) = h(k_1, k_2) * * x(k_1, k_2) = \sum_{i_1} \sum_{i_2} h(i_1, i_2) x(k_1 - i_1, k_2 - i_2).$$

- Input x has typically limited region of support (size), e.g., it can be an image of $N_1 \times N_2$ pixels.
- Convolutional kernel h may have limited or finite region of support

- Finite impulse response (FIR) systems: $h(n_1, n_2)$ is zero outside some filter mask (region) $M_1 \times M_2$, $0 \le n_1 < M_1, 0 \le n_2 < M_2$.
- FIR filters are described by a 2D linear convolution with convolutional kernel *h* of size $M_1 \times M_2$ is given by:

$$y(k_1,k_2) = h(k_1,k_2) * * x(k_1,k_2) = \sum_{i_1=0}^{n-1} \sum_{i_2=0}^{n-1} h(i_1,i_2)x(k_1-i_1,k_2-i_2).$$

• Usually discrete systems without feedback are FIR ones.

FIR filter example

Artificial Intelligence & Information Analysis Lab

• The moving average filter $M_1 \times M_2$, $M_i = 2\nu_i + 1$:

 3×3 moving average filter.

a) Image Lena; b) 5×5 moving average filter output.

Animation of 2D Convolution with input padding.

Example of 2D Convolution with input padding.

- A 2D linear convolution of convolutional kernel h of size $M_1 \times M_2$ operating on an image x of size $N_1 \times N_2$ of size produces an output image y:
 - of size M_1M_2 using zero padding

Artificial Intelligence & Information Analysis Lab

- **Complexity**: $N_1N_2M_1M_2$ multiplications.
- of size $(N_1 M_1 + 1) (N_2 M_2 + 1)$, without input image border padding.
 - **Complexity**: $(N_1 M_1 + 1) (N_2 M_2 + 1) M_1 M_2$ multiplications.
- In both cases complexity is $O(N^4)$, if N_1, N_2, M_1, M_2 are of order N.

A 2D FIR filter output can also be described as inner product:

$$y(n_1, n_2) = \sum_{k_1=0}^{M_1-1} \sum_{k_2=0}^{M_2-1} h(k_1, k_2) x(k_1 - n_1, k_2 - n_2) = \mathbf{h}^T \mathbf{x}(n_1, n_2).$$

- h = [h(0,0), ..., h(M₁ − 1, M₂ − 1)]^T: template image vector.
 x(n₁, n₂) = [x(n₁, n₂), ..., x(n₁ − M₁ + 1, n₂ − M₂ + 1)]^T: local neighborhood (window) image vector.
- GPU computing and fast linear algebra libraries (e.g., cuBLAS) can be used for 2D convolution and correlation computations.

IIR Edge Detector output.

2D linear correlation

2D *correlation* of template image h and input image x (inner product):

$$r_{hx}(n_1, n_2) = \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} h(k_1, k_2) x(n_1 + k_1, n_2 + k_2) = \mathbf{h}^T \mathbf{x}(n_1, n_2).$$

- $\mathbf{h} = [h(0,0), ..., h(N_1 1, N_2 1)]^T$: template image vector.
- $\mathbf{x}(n_1, n_2) = [x(n_1, n_2), ..., x(n_1 + N_1 1, n_2 + N_2 1)]^T$: local neighborhood (window) image vector.

2D linear and cyclic convolutions **CML**

• Two-dimensional linear convolution with convolutional kernel h of size $M_1 \times M_2$ is given by:

$$y(k_1, k_2) = h(k_1, k_2) * * x(k_1, k_2) = \sum_{i_1=0}^{M_1-1} \sum_{i_2=0}^{M_2-1} h(i_1, i_2) x(k_1 - i_1, k_2 - i_2).$$

• Its two-dimensional cyclic convolution counterpart of support $N_1 \times N_2$ is defined as:

$$y(k_1,k_2) = h(k_1,k_2) \circledast x(k_1,k_2) = \sum_{i_1=0}^{N_1-1} \sum_{i_2}^{N_2-1} h(i_1,i_2) x\left((k_1-i_1)_{N_1},(k_2-i_2)_{N_2}\right).$$

2D Discrete Fourier Transform

$$X(k_1, k_2) = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x(n_1, n_2) W_{N_1}^{n_1 k_1} W_{N_2}^{n_2 k_2}$$

$$x(n_1, n_2) = \frac{1}{N_1 N_2} \sum_{k_1=0}^{N_1 - 1} \sum_{k_2=0}^{N_2 - 1} X(k_1, k_2) W_{N_1}^{-n_1 k_1} W_{N_2}^{-n_2 k_2}.$$

• Complex roots of unity:

$$W_{N_i} = \exp\left(-i\frac{2\pi}{N_i}\right), \quad i = 1,2.$$

Artificial Intelligence & Information Analysis Lab

2D Discrete Fourier Transform

Cyclic spatial translation (shift):

$$\begin{split} y(n_1,n_2) &= x(((n_1-m_1))_{N_1},((n_2-m_2))_{N_2}) \leftrightarrow \\ Y(k_1,k_2) &= W_{N_1}^{m_1k_1} W_{N_2}^{m_2k_2} X(k_1,k_2), \end{split}$$

$$((n))_N \stackrel{\Delta}{=} n \mod N.$$

• Frequency shift:

 $\begin{aligned} x(n_1, n_2) &= W_{N_1}^{-n_1 l_1} W_{N_2}^{-n_2 l_2} w(n_1, n_2) \leftrightarrow \\ X(k_1, k_2) &= X(((k_1 - l_1))_{N_1}, ((k_2 - l_2))_{N_2}) \end{aligned}$

 n_1

2D Discrete Fourier Transform

Circular shift of a 2D sequence.

• Cyclic Convolution Theorem:

$$y(n_1, n_2) = x(n_1, n_2) \circledast \circledast h(n_1, n_2),$$

$$Y(k_1, k_2) = X(k_1, k_2)H(k_1, k_2).$$

Cyclic Correlation:

 $\begin{aligned} r_{hx}(n_1, n_2) &= h(n_1, n_2) \circledast x(-n_1, -n_2), \\ R_{hx}(k_1, k_2) &= H^*(k_1, k_2) X(k_1, k_2). \end{aligned}$

2D Cyclic Convolution Calculation with DFT

2D convolution calculation using the DFTs.

Zero padding for embedding a 2D linear convolution to a cyclic one.

2D Linear Convolution with DFT

- Compute the $N_1 \times N_2$ 2D DFTs of $x_p(n_1, n_2)$ and $h_p(n_1, n_2)$;
- Compute $Y_p(k_1, k_2)$ as the product of $X_p(k_1, k_2)$ and $H_p(k_1, k_2)$;
- Compute $y_p(n_1, n_2)$ as the inverse 2D DFT of $Y_p(k_1, k_2)$;
- The result is the region $[0, L_1) \times [0, L_2)$ of $y_p(n_1, n_2)$.
- 2D DFTs are calculated fast through 2D Fast Fourier Transform (FFT) algorithms.
- Typically, 2D DFT length is chosen to be a power of 2: $L_i = 2^{l_i} \ge N_i + M_i - 1, \quad i = 1, 2.$

Convolutions using 2D FFT

(VML

• Direct approach is faster for a small filter $M_1 \times M_2$ when:

 $M_1M_2 < 6\log_2(N_1N_2) + 4.$

Convolutions using 2D FFT

- For larger filters (close to the image size), computational complexity is:
 - $O(kN^4)$ for the direct method.
 - $O(kN^2 \log_2 N)$ using 2D FFT.

Computational complexity of 2D FIR filters.

В

Α

■ h_{N-1}

С

• Winograd 2D convolution algorithms or fast 2D filtering:

 $\mathbf{y} = \mathbf{C}(\mathbf{A}\mathbf{x}\otimes\mathbf{B}\mathbf{h}).$

 GEneral Matrix Multiplication * (GEMM) BLAS or cuBLAS routines can be used.

- Alternative Winograd algorithm formulation: $\mathbf{y} = \mathbf{R}\mathbf{B}^T (\mathbf{A}\mathbf{x} \otimes \mathbf{C}^T \mathbf{R}\mathbf{h}).$
- Matrices A, B typically have elements 0, +1, -1.
- Multiplications $C^T Rh$, $RB^T y'$ are done only by additions/subtractions.
- **R** is an $N \times N$ permutation matrix.
- Rh can be precomputed.

Artificial Intelligence & Information Analysis Lab

• It has theoretically minimal computational complexity.

• 2D 3 \times 3 cyclic convolution definition as 2D polynomial product:

$$Y(z_1, z_2) = H(z_1, z_2)X(z_1, z_2) \mod (z_1^3 - 1), (z_2^3 - 1),$$

where:

$$X(z_1, z_2) = x_{00} + x_{01}z_2 + x_{02}z_2^2 + x_{10}z_1 + x_{11}z_1z_2 + x_{12}z_1z_2^2 + x_{20}z_1^2 + x_{21}z_1^2z_2 + x_{22}z_1^2z_2^2,$$

$$H(z_1, z_2) = h_{00} + h_{01}z_2 + h_{02}z_2^2 + h_{10}z_1 + h_{11}z_1z_2 + h_{12}z_1z_2^2 + h_{20}z_1^2 + h_{21}z_1^2z_2 + h_{22}z_1^2z_2^2.$$

Factorization of:

$$z^3 - 1 = (z - 1)(z^2 + z + 1)$$

can be used to decompose $X(z_1, z_2)$ as follows:

- $X_1(z_1, z_2) = X(z_1, z_2) \mod(z_1 1), (z_1 1),$ • $X_2(z_1, z_2) = X(z_1, z_2) \mod(z_1 - 1), (z_2^2 + z_2 + 1),$
- $X_3(z_1, z_2) = X(z_1, z_2) \mod(z_2 1), (z_1^2 + z_1 + 1),$ • $X_4(z_1, z_2)$

 $= X(z_1, z_2) \mod(z_1^2 + z_1 + 1), (z_2^2 + z_2 + 1).$

1 0 0 1 1 1 A = B =0 -1 -1-1-1 1 0 0 -1-10 0 0

Arrays A, B of Winograd 3×3 cyclic convolution.

Array C of Winograd 3×3 Cyclic Convolution.

0.5 1 1.5 2 2.5 3

3.5

Visualization of Array **A** of Winograd 3×3 cyclic convolution.

3.5

3 3.5

- The original 117+13 additions were reduced to 44 additions (*only 36,6% of the original number*).
- Only 9 out of the 13 multiplications are needed because only the last one output element is kept.

Reducing additions in Ax product of Winograd 3 × 3 cyclic convolution.

A = B =0 00

Artificial Intelligence & Information Analysis Lab

Arrays A, B of Winograd 4×4 cyclic convolution.

Artificial Intelligence & Information Analysis Lab

Array C of Winograd 4×4 cyclic convolution.

Í VML

 Reduction of the total number of additions of a Winograd 4 × 4 Cyclic Convolution to 26.6% of their original number, using precalculated sums.

	Precalc. Additions	Final Additions	Total	Naive approx.	
Ax	40	36	76	352	
$\mathbf{R}\mathbf{A}^T(\mathbf{A}\mathbf{x}\otimes\mathbf{C}^T\mathbf{R}\mathbf{h})$	17	24	41	88	
Total additions	57	60	117	440	

Visualization of Array A of Winograd 4×4 cyclic convolution.

ML

- Reducing additions in Ax product of Winograd 3 × 3 cyclic convolution.
- For illustration simplicity, only 13 of 22 Ax product entries are shown.

Artificial Intelligence & Information Analysis Lab

Nested convolutions

- Winograd algorithms exist for relatively short convolution lengths.
- Use of efficient short-length convolution algorithms iteratively to build long convolutions
- Does not achieve minimal multiplication complexity
- Good balance between multiplications and additions
 Decomposition:
 - 2D convolution : $N \times N = N_1 N_2 \times N_1 N_2$, for N_1, N_2 coprime integers $(N_1, N_2) = 1$, can be implemented using nested $N_1 \times N_1$, $N_2 \times N_2$ convolutions.

Block-based 2D convolution

2D overlap-add algorithm is based on the distributive property of convolution:

- An image $x(i_1, i_2)$ can be divided into $K_1 \times K_2$ non-overlapping subsequences, having dimensions $N_{B1} \times N_{B2}$ each: $x_{k_1k_2}(i_1, i_2) = \begin{cases} x(i_1, i_2) & k_1N_{B1} \le i_1 < (k_1 + 1)N_{B1}, & k_2N_{B2} \le i_2 < (k_2 + 1)N_{B2} \\ 0 & \text{otherwise.} \end{cases}$
- The linear convolution output $y(n_1, n_2)$ is the sum of the convolution outputs produced by the input sequence blocks:

$$y(i_1, i_2) = x(i_1, i_2) ** h(i_1, i_2) = \sum_{k_1=1}^{K_1} \sum_{k_2=1}^{K_2} x_{k_1k_2}(i_1, i_2) ** h(i_1, i_2) = \sum_{k_1=1}^{K_1} \sum_{k_2=1}^{K_2} y_{k_1k_2}(i_1, i_2).$$

Overlap-add algorithm

Overlap-add algorithm.

Overlap-save algorithm

- Every x_{ij} item is non-zero, therefore only the inner $N_1 \times N_2$ part is correct;
- Addition all the 'trimmed' boxes to get the output.
- Block-based algorithms can be easily parallelized.
- They are suitable for GPU computing.

Convolutional Neural Networks **WAL**

Convolutional Neural Networks (CNN):

- employ image convolutions in the first layers.
- They may employ fully connected MLPs in the last layers.

Convolutional Neural Networks **VML**

Convolutional Layers employ:

- A d_{out} -dimensional *feature descriptor* vector $\mathbf{z}_{ij} = [z_{ijo}, o = 1, ..., d_{out}]^T$ holds all output features for a feature map location $[i, j]^T$.
- The convolution kernel is described by a **4D tensor**:

$$\begin{split} \mathbf{W} &= [w_{k_1k_2ro}; \quad k_1 = 1, \dots, M_1, k_2 = 1, \dots, M_2, r = 1, \dots, d_{in}, o = 1, \dots, d_{out}] \in \mathbb{R}^{M_1 \times M_2 \times d_{in} \times d_{out}}. \end{split}$$

Convolutional Neural Networks (VML

• For a convolutional layer l with an activation function $f^{(l)}(\cdot)$, multiple incoming features d_{in} and one single output feature o:

$$a_{ijo}^{(l)} = f^{(l)} \left(\sum_{r=1}^{d_{in}} \sum_{k_1 = -\nu_1^{(l)}}^{\nu_1^{(l)}} \sum_{k_2 = -\nu_2^{(l)}}^{\nu_2^{(l)}} w_{k_1 k_2 ro}^{(l)} a_{(i-k_1)(j-k_2)r}^{(l-1)} + b_o^{(l)} \right).$$

 The input to the first convolutional layer is a multichannel image x_{ijr}:

$$a_{ijr}^{(0)} = x_{ijr}$$

Deep Learning Frameworks

Intel Neon

- Neon is a modern deep learning framework created by Nervana Systems.
- Implemented in Python, while Nervana Caffe framework is written in C and C++.
- Impressively fast compared to other frameworks.
- Image processing oriented (not general purpose enough).

cuDNN convolution algorithms:

- DIRECT
 - CUDNN-CONVOLUTION-FWD-ALGO-DIRECT;
- FFT
 - CUDNN-CONVOLUTION-FWD-ALGO-FFT;
 - CUDNN-CONVOLUTION-FWD-ALGO-FFT-TILING;
- GEMM
 - CUDNN-CONVOLUTION-FWD-ALGO-GEMM;
 - CUDNN-CONVOLUTION-FWD-ALGO-IMPLICIT-GEMM;
 - CUDNN-CONVOLUTION-FWD-ALGO-IMPLICIT-PRECOMP-GEMM;
- WINOGRAD
 - CUDNN-CONVOLUTION-FWD-ALGO-WINOGRAD;
 - CUDNN-CONVOLUTION-FWD-ALGO-WINOGRAD-NONFUSED;

Artificial Intelligence & Information Analysis Lab

Data transformation performed for the GEMM convolution approach.

Artificial Intelligence & Information Analysis Lab

Fastest cuDNN algorithm

- The preferred cuDNN algorithm can be chosen either by the developer or by cuDNN parameter CUDNN-CONVOLUTION-FWD-PREFER-FASTEST, based on input and kernel size.
- GEMM algorithms (IMPLICIT GEMM in particular) are the fastest cuDNN algorithms for tested input and kernel size.
- GEMM-based algorithms transform the inputs and filter to be able to exploit high-performance matrix-matrix multiply operations.

cuDNN convolution parameters:

- 3×3 convolution kernel
- 512×512 pixel input image
- Winograd 4 × 4 cyclic convolution parameters:
- Same image and convolution kernel size, as in cuDNN convolution.
- Input image blocks (tiles)
 - 65536 2 × 2 input image tiles
- 4×4 cyclic convolution.

• Overlap-Save block-based convolution implementation.

51

- Speed Comparisons of various 2D Convolution Routines.
- Winograd 4 × 4 cyclic convolution routine performs 4.77 × faster than the faster cuDNN convolution and 11.33 × faster than the corresponding cuDNN Winograd linear convolution routine.
- GEMM-0 is the fastest cuDNN algorithm.
- Winograd-6 is based on Linear Winograd convolution algorithm.

		SNR	Time (ms)	xSlower than Winograd Cyclic 4x4
	4x4 Winograd Cyclic	142.54	0.0809	
	cuDNN GEMM-0	140.75	0.3860	4.77
	cuDNN GEMM-1	140.75	0.4575	5.66
	cuDNN GEMM-2	140.75	0.3901	4.82
	cuDNN Winograd-6	140.75	0.9168	11.33
∖rt hf⊂	cuDNN Winograd-7	140.75	8.8710	109.66

GTX1060 Visual Studio IDE implementation

 Performance Comparison on GTX1060 GPU (1,280 CUDA cores) between Winograd 4 × 4 cyclic convolution and cuDNN Library algorithms for over 1,000 runs.

GTX1080 Eclipse IDE

 Performance Comparison on GTX1080 GPU (2,560 CUDA cores) over 1,000 runs between a) Winograd 4 × 4 cyclic convolution and b) cuDNN Library algorithm GEMM-0 which is the fastest cuDNN algorithm in this

Bibliography

[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.

[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).

[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.
 [NIK2000] N. Nikolaidis and I. Pitas, "3D Image Processing Algorithms", J. Wiley, 2000.
 [PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

