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Convolution Algorithms
• Machine learning

• Fast implementation of 1D/2D/3D convolutions in

• Convolutional Neural Networks (CNNs).

• Fast implementation of 1D digital filters

• 1D signal filtering (e.g., audio/music, ECG, EEG)

• 1D Signal feature calculation

• Fast implementation of 1D correlation

• 1D template matching

• Time-of-flight (distance) calculation (e.g., sonar)



Convolution Algorithms
• Fast implementation of 2D/3D convolutions:

• Image/video filtering

• Image/video feature calculation:

• Gabor filters

• Spatiotemporal feature calculation

• Fast implementation of 2D correlation:

• Template matching

• Correlation tracking.
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Linear 1D convolution

• Linearity:

𝑇 𝑎𝑥1 + 𝑏𝑥2 = 𝑎𝑇 𝑥1 + 𝑏𝑇 𝑥2 .

• Shift-Invariance:

𝑦(𝑛) = 𝑇[𝑥(𝑛)] ⇒

𝑦 𝑛 −𝑚 = 𝑇 𝑥 𝑛 −𝑚 .

LSI system convolution :   𝑦 𝑛 = ℎ 𝑛 ∗ 𝑥 𝑛 .

𝑇[𝑥(𝑛)]
𝑥(𝑛) 𝑦(𝑛)



Linear 1D convolution

The one-dimensional (linear) convolution of:

• an input signal 𝑥 of length 𝐿 and

• a convolution kernel ℎ (filter mask, finite impulse response) of

length 𝑀 is defined as:

𝑦 𝑛 = ℎ 𝑛 ∗ 𝑥 𝑛 ≜ 

𝑖=0

𝑀−1

ℎ 𝑖 𝑥 𝑛 − 𝑖 .

• For a convolution kernel centered around 0 and 𝑀 = 2𝑣 + 1,

convolution takes the form:

𝑦 𝑛 = ℎ 𝑛 ∗ 𝑥 𝑛 = 

𝑖=−𝑣

𝑣

ℎ 𝑖 𝑥 𝑛 − 𝑖 .



Linear 1D convolution

Vectorial convolution input/output, kernel representation:

• 𝐱 = 𝑥 0 ,… , 𝑥(𝐿 − 1) 𝑇: input vector.

• 𝐡 = ℎ 0 ,… , ℎ(𝑀 − 1) 𝑇: filter corfficient vector.

• 𝐲 = 𝑦 0 ,… , 𝑦 𝑁 − 1 𝑇: output vector, with 𝑁 = 𝐿 +𝑀 − 1.

• 1D linear convolution between two discrete signals 𝐱, 𝐡 can be

expressed as the matrix-vector product:

𝐲 = 𝐇𝐱,

where 𝐇 is a 𝑁 × 𝐿 matrix.



Linear 1D convolution
• 𝐇 : a 𝑁 × 𝐿 band matrix of the form:

𝐇 =

ℎ 0 0 ⋯ 0
ℎ(1) ℎ(0) ⋯ ⋯

⋯ ⋯ ⋯ 0
ℎ(𝑀−1) ℎ 𝑀−2 ⋯ 0
0 ℎ(𝑀−1) ⋯ 0
⋯ ⋯ ⋯ ⋯

0 0 ⋯ ℎ(𝑀−1)

.

• Alternative matrix notation:  𝐲 = 𝐗𝐡, where 𝐗 is an N ×𝑀 matrix.

• Fast calculation of the product 𝐲 = 𝐇𝐱 using BLAS/cuBLAS.
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Winograd Linear Convolution

Winograd linear convolution: Intermediate addition result is used 2 times.



Winograd Linear Convolution

• Winograd linear convolution algorithm requires 𝑚 + 𝑟 −
1multiplications, 𝑚 and 𝑟: lengths of 𝑦 and ℎ, respectively.

• General form of optimal Winograd linear convolution

algorithms:

𝐲 = 𝐀𝑇 𝐇𝐡 ⊗ 𝐁𝑇𝐱 ,

• ⊗ indicates element-wise 𝑚 + 𝑟 − 1multiplications.

• 𝐱, 𝐡, 𝐲: input signal, filter coefficient and output signal vectors.
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Cyclic 1D convolution

• One-dimensional cyclic convolution of length 𝑁 :

𝑦 𝑘 = 𝑥 𝑘 ⊛ ℎ 𝑘 = 

𝑖=0

𝑁−1

ℎ 𝑖 𝑥 𝑘 − 𝑖 𝑁 ,

(𝑘)𝑁= 𝑘 mod 𝑁.

• It is of no use in modeling linear systems.

• Important use: Embedding linear convolution in a fast

cyclic convolution 𝑦 𝑛 = 𝑥 𝑛 ⊛ ℎ 𝑛 of length 𝑁 ≥ 𝐿 +
𝑀 − 1 and then performing a cyclic convolution of length 𝑁.



Cyclic 1D convolution

Cyclic convolution of 𝑥 𝑛 = {1, 2, 0} and ℎ 𝑛 = {3, 5, 4}.

Clock-wise

Anticlock-wise

Folded sequence

0 𝑠𝑝𝑖𝑛𝑠 1 𝑠𝑝𝑖𝑛 2 𝑠𝑝𝑖𝑛𝑠

1

20

3

5 4

3

5 4 3

5

4

4

3 5
0 0 02 22

1 1 1

𝑦 0 = 1 × 3 + 2 × 4 + 0 × 5 𝑦 1 = 1 × 5 + 2 × 3 + 0 × 4 𝑦 2 = 1 × 4 + 2 × 5 + 0 × 3



Cyclic 1D convolution

Zero-padding.



Cyclic 1D convolution

• Cyclic convolution calculation using 1D Discrete

Fourier Transform (DFT):

𝐲 = 𝐼𝐷𝐹𝑇 𝐷𝐹𝑇 𝐱 ⊗ 𝐷𝐹𝑇 𝐡 .

• Fast calculation of DFT, IDFT through FFT algorithm.

𝐷𝐹𝑇

𝐷𝐹𝑇

𝐼𝐷𝐹𝑇

𝑥(𝑛)

ℎ(𝑛)

𝑋(𝑘)

𝐻(𝑘)

Y(𝑘) 𝑦(𝑛)
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1D FFT

• There are various Fast Fourier Transform (FFT)

algorithms to speed up the calculation of DFT.

• The best known is the radix-2 decimation-in-time (DIT)

Fast Fourier Transform (FFT) (Cooley-Tuckey).

• DFT of a sequence 𝑥 𝑛 of length 𝑁 (𝑛 = 0,… ,𝑁 − 1):

𝑋 𝑘 = σ𝑛=0
𝑁−1 𝑥 𝑛 𝑒−

2𝜋𝑖

𝑁
𝑛𝑘 , 𝑘 = 0,… , 𝑁 − 1.

• 𝑁-th complex root of unity:  𝑊𝑁
𝑛 = 𝑒−

2𝜋𝑖

𝑁
𝑛, 𝑛 = 0,… , 𝑁 − 1.



1D FFT
• radix-2 FFT breaks a length-N DFT into many size-2 DFTs called 

"butterfly" operations.

• There are log2N FFT

stages.
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Winograd Cyclic Convolution

𝒵 transform of a discrete signal 𝑥(𝑛) having domain [0, … , 𝑁 −
1] is given by:

𝑋 𝑧 = 

𝑛=0

𝑁−1

𝑥 𝑛 𝑧−𝑛 .

The domain of 𝑍 transform is the complex plane, since 𝑧 is a

complex number.

Convolution property of the 𝑍 transform (polynomial product

𝑋(𝑧)𝐻(𝑧)):

𝑦(𝑛) = 𝑥(𝑛) ∗ ℎ(𝑛) ⇔ 𝑌(𝑧) = 𝑋(𝑧)𝐻(𝑧).



Winograd Cyclic Convolution

Polynomial product form of the 1D cyclic convolution:

𝑦 𝑘 = 𝑥 𝑘 ⊛ ℎ 𝑘 = 

𝑖=0

𝑁−1

ℎ 𝑖 𝑥 𝑘 − 𝑖 𝑁 ,

where: (𝑘)𝑁 = 𝑘 mod 𝑁.

𝑦 𝑘 = 𝑥 𝑘 ⊛ ℎ 𝑘 < => 𝑌 𝑧 = 𝑋 𝑧 𝐻 𝑧 mod 𝑧𝑁 − 1.



Winograd Cyclic Convolution

• Winograd convolution algorithms or

fast filtering algorithms:

𝐲 = 𝐂 𝐀𝐱⨂𝐁𝐡 .

• They require only 2𝑁 −
𝑣 multiplications in their middle

vector product, thus having minimal

complexity.

• 𝜈: number of cyclotomic polynomial

factors of polynomial 𝑧𝑁 − 1 over

the rational numbers 𝑄.



Winograd Cyclic Convolution

Block diagram of Winograd Cyclic convolution Algorithm for 𝑁 = 3.



Winograd Cyclic Convolution

Block diagram of Winograd Cyclic convolution Algorithm for 𝑁 = 3.



Winograd Cyclic Convolution

Winograd Cyclic Convolution algorithm can be equivalently 

expressed as: 

𝐲 = 𝐑𝐁𝑇 𝐀𝐱⨂𝐂𝑇𝐑𝐡 .

• Matrices 𝐀, 𝐁 typically have elements 0,+1,−1.

• Multiplications 𝐂𝑇𝐑𝐡, 𝐑𝐁𝑇𝐲′ are done only by 

additions/subtractions.

• 𝐑 is an 𝑁 × 𝑁 permutation matrix.

• 𝐂𝑇𝐑h can be precomputed. 



Winograd Cyclic Convolution

• Winograd algorithm works on small blocks of the input

signal.

• The input block and filter are transformed.

• The outputs of the transform are multiplied together in an

element-wise fashion.

• The result is transformed back to obtain the outputs of the

convolution.

• GEneral Matrix Multiplication (GEMM) BLAS or cuBLAS
routines can be used.
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Nested convolutions
• Winograd algorithms exist for relatively short convolution

lengths, e.g.: 𝑁 = 3, 5, 7.

• Use of efficient short-length convolution algorithms iteratively to

build long convolutions.

• Does not achieve minimal multiplication complexity.

• Good balance between multiplications and additions.

Decomposition of 1D convolution into a 2D convolution:

• 1D convolution of length: 𝑁 = 𝑁1𝑁2
• with 𝑁1, 𝑁2 co-prime integers, 𝑁1, 𝑁2 = 1

• results into a 2D 𝑁1 × 𝑁2 convolution.



Fast 1D Convolution Algorithms
• Convolution Algorithms

• Linear Convolutions

• Winograd Linear Convolution

• Cyclic Convolutions

• 1D FFT

• Winograd Cyclic Convolution

• Nested convolutions

• Block convolutions

• Applications

• Convolutional neural networks.



Block Convolutions

• Input signal x 𝑛 is split in overlapping/non-overlapping blocks.

• Blocks are convolved independently.

• Great parallelism is achieved.

• Two block-based convolution methods:

• Overlap-add method

• Overlap-save method.



Block Convolutions
𝐿 𝐿𝐿

𝑥2 𝑛

𝑥3 𝑛

𝑥1 𝑛

𝑦2 𝑛

𝑦1 𝑛

𝑦3 𝑛

(𝑀 − 1) zeros

(𝑀 − 1) zeros

(𝑀 − 1) zeros

(𝑀 − 1) points

(𝑀 − 1) points

(𝑀 − 1) points

(𝑀 − 1) points

(𝑀 − 1) points

Overlap-add  method.



Block Convolutions

Overlap-add  method.



Block Convolutions

𝐿 𝐿 𝐿

(𝑀 − 1) zeros(𝑀 − 1) point overlap

(𝑀 − 1) point overlap

Discard (𝑀 − 1) points
Overlap-save  method.

Input signal blocks

Output signal blocks



Block Convolutions

Overlap-save  method.
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Applications

• Convolutional neural networks

• Signal processing

• Signal filtering

• Signal restoration

• Signal deconvolution

• Signal analysis

• Time delay estimation

• Distance calculation (e.g., sonar)

• 1D template matching



Applications
Convolutional Neural Network (CNN) two step architecture:

• First layers with sparse NN connections: convolutions.

• Fully connected final layers.

• Need for fast convolution calculations.
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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