

Face Recognition summary

I. Giannakopoulos, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 3.0

- Face recognition/identification
- Face verification
- Performance evaluation
- Traditional face recognition
- DNN face recognition
- Facial label propagation

Face

Recognition/identification

Problem statement:

- To identify a face identity
- Input for training: several facial ROIs per person
- Input for inference: a facial ROI
- Inference output: the face id
- Supervised learning
- Applications:

Biometrics Surveillance applications Video analytics

Face verification

Problem statement:

- To verify a face identity
- Input for training: several facial ROIs per person
- Input for inference: a facial ROI and a person id
- Inference output: yes/no
- Supervised learning
- Applications:

Biometrics Surveillance applications Video analytics

Face Recognition pipeline

• The basic pipeline that a Face Recognition system use.

Face Recognition pipeline

Information Analysis Lab

ML

Face Recognition pipeline

In face matching, there are two different tasks:

- Face Verification (FV):
 - One-to-One comparison.
- Face Identification (FI):
 - One-to-Many comparison.

- Face recognition/identification
- Face verification
- Performance evaluation
- Traditional face recognition
- DNN face recognition
- Facial label propagation

Training protocols and evaluation tasks

Artificial Intelligence &

Information Analysis Lab

Face Recognition Protocol and Evaluation Tasks

Training protocols

- In terms of training protocol, FR model can be evaluated under settings:
 - Subject-dependent.
 - Subject-independent.
- According to whether testing identities appear in training set or not.

Evaluation tasks

- In terms of testing tasks, the performance of recognition model can be evaluated under settings:
 - Face Verification.
 - Close-set Face Identification.
 - Open-set Face Identification.

Training protocols and evaluation tasks

Face Verification VS Face Identification

Information Analysis Lab

Face Verification Evaluation tasks

- One-to-one comparison.
- Model has to decide whether two face images come from the same person.

Face Verification Performance Metrics

- False Match Rate (FMR):
 - Proportion of non-mated samples (different subject), that are falsely declared as match.
 - True Match Rate (TMR) = 1 FMR.
- False Non-Match Rate (FNMR):
 - Proportion of mated samples (same subject), that are falsely declare to non-match.
 - True Non-Match Rate (TNMR) = 1 FNMR.

Face Identification Evaluation tasks

- CLOSED-SET IDENTIFICATION:
 - Input is a face image corresponding to a subject which is known inside the reference database.
 - Find the person within the database.
 - One-to-N comparison, where N is the size of the reference database.

Face Identification Performance Metrics

• CLOSED-SET IDENTIFICATION:

- Identification rate at rank r:
 - The probability that a transaction by a user enrolled in the system
 - User's true identifier within the top r matches returned.
 - When a single point identification rank is reported, it should be referenced directly to the database size.
 - Example: "The identification rate at rank 1 was 95 % against a database of 250 entries".

Face Identification Evaluation tasks

- OPEN-SET IDENTIFICATION:
 - Input is:
 - Face image corresponding to a subject:
 - Exist.
 - Do not exist in the database.
 - Output is:
 - The identity of the search subject within the database.
 - Or a notification that the person has not been found in the database.

Face Identification Performance Metrics

- OPEN-SET IDENTIFICATION:
 - (True positive) identification rate at rank r:
 - Probability that a transaction by a user enrolled in the system.
 - user's true identifier within the top r matches returned.
 - False-negative identification-error rate (FNIR):
 - Proportion of identification transactions by users enrolled in the system.
 - The user's correct identifier is not included in the candidate list returned.
 - False-positive identification-error rate (FPIR):
 - Proportion of identification transactions by users not enrolled in the system.
 - For which a non-empty list of candidate identifiers is returned.

Artificial Intelligence & Information Analysis Lab

- Face recognition/identification
- Face verification
- Performance evaluation
- Traditional face recognition
- DNN face recognition
- Facial label propagation

Two general approaches:

- Traditional methods
 - Subspace methods
 - Elastic graph matching methods.
 - DNN face recognition (state of the art)

Subspace methods

• The original high-dimensional image space is projected onto a lowdimensional one.

• Face recognition according to a simple distance measure in the low dimensional space.

 Subspace methods: Eigenfaces (PCA), Fisherfaces (LDA), ICA, NMF, Class Specific NMF (CSNMF).

• Main limitation of subspace methods: they require perfect face alignment (registration).

Face Recognition - NMF

- Original facial images are reconstructed using only additive combinations of the resulting basis images.
- Combination weights: coefficients in **H**.

 Consistent with the psychological intuition regarding the objects representation in the human brain (i.e. combining parts to form the whole).

Elastic graph matching (EGM) methods

- Elastic graph matching is a simplified implementation of the Dynamic Link Architecture (DLA).
- DLA represents an object by a rectangular elastic grid.
- A Gabor wavelet bank response is measured at each grid node.
- Multiscale dilation-erosion at each grid node can be used, leading to Morphological EGM (MEGM).

Output of normalized multi-scale dilation-erosion for nine scales.

- Face recognition/identification
- Face verification
- Performance evaluation
- Traditional face recognition
- DNN face recognition
 - Facial label propagation

Deep Face Recognition/Verification

- Introduction [1][2][3][4][5]
- Traditional Face Recognition System [2]
- Deep Face Recognition pipeline [1][2][4]
- Deep Learning Models [1][3][4]
- Face Recognition Scenes [1]
- Face Recognition Problems [4]

Deep Face Recognition/Verification

- Face recognition is a visual pattern recognition problem:
 - The face/3D-object that is subject to varying:
 - Illumination
 - Pose
 - Expression
 - Other factors that need to be identified based on acquired 2D images.
- Deep Neural Networks have advantages over traditional algorithms (Eigenfaces, Fisherfaces, Bayesian, SVM, etc).
 - Learning ability, generalization and robustness

Deep Face Recognition/Verification

- The main difference between traditional face recognition systems and deep-based approaches lies in the feature extraction algorithm:
 - Features extracted in traditional systems:
 - Are hand-crafted.
 - Features extracted by the deep-based approaches:
 - Learned by the neural network based on a pool of data subjects which is used to train a network based on a specific loss function.

Artificial Intelligence & Information Analysis Lab

Deep Face Recognition pipeline

Artificial Intelligence & Information Analysis Lab

Deep Face Recognition pipeline

- Deep FR system with face detector and alignment:
 - First, a face detector is used to localize faces.
 - Second, the faces are aligned to normalized canonical coordinates.
 - Third, the FR module is implemented.

Deep Face Recognition pipeline

- Deep FR module in general:
 - Face anti-spoofing recognizes whether the face is live or spoofed.
 - Face processing is used to handle recognition difficulty before training and testing.
 - Different architectures & loss functions are used to extract discriminative deep feature when training.
 - Face matching methods are used to do feature classification when the deep feature of testing data are extracted.

Deep learning models

- Convolutional neural networks (CNNs).
- Auto encoder (AE).
- Restricted Boltzmann machine (RBM), Deep Belief networks (DBNs), Deep Boltzmann machines (DBMs).
- Generative Adversarial Networks (GANs).
- Hybrid architectures.

Modules of FR and commonly used Methods

- Real World Scenes:
 - Cross-factor FR.
 - Heterogenous FR.
 - Multiple (or single) media FR.
 - FR in industry.

ML

- Cross-factor FR:
 - Cross-Pose Face Recognition.
 - Cross-Age Face Recognition.
 - Makeup Face Recognition.

- Heterogenous FR:
 - NIR-VIS Face Recognition.
 - Low-Resolution Face Recognition.
 - Photo-Sketch Face Recognition.

- Multiple (or single) media FR:
 - Low-Shot Face Recognition.
 - Set/Template-Based Face Recognition.
 - Video Face Recognition.

- FR in industry:
 - 3D Face Recognition.
 - Partial Face Recognition.
 - Face Anti-attack.
 - Face Recognition for Mobile Devices.

Face Recognition Problems

- Still image-based face recognition (SIFR).
- Video-based face recognition (VFR).
- Heterogeneous face recognition (HFR).
- Image set-based face recognition (ISFR).
- Hard mining.
- Closed-set vs. open-set face recognition.

- Face recognition/identification
- Face verification
- Performance evaluation
- Traditional face recognition
- DNN face recognition
- Facial label propagation

Facial label propagation

Problem statement:

- To transfer labels from labeled to unlabeled facial images
- Input: a) labeled facial ROIs,
 b) unlabeled facial ROIs
- Output: facial image labels
- Semi-supervised learning
- Applications:

Biometrics Surveillance applications Video analytics

Label propagation on facial videos

Problem description:

- Person identity label propagation on stereo facial images, starting from a small set of data with known label.
- The facial images are automatically extracted from the video by performing automatic face detection and tracking to the left and right video channel

Facial video.

Label propagation on facial videos

Label propagation on facial videos

- In cases where the data can be represented in more than one feature spaces, one graph can be constructed for each representation method.
- The fusion of multiple data representations can be performed:
 - at the graph construction level (early fusion).
 - at the decision taking level (late fusion).
- The performance of label propagation algorithms depends highly on
 - The data representation method (the data graph construction);
 - The selection of the initially labeled data set.

Artificial Intelligence & Information Analysis Lab

Bibliography

[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.

[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).

[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.
 [NIK2000] N. Nikolaidis and I. Pitas, "3D Image Processing Algorithms", J. Wiley, 2000.
 [PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

