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Face Recognition @ML

 Face recognition/identification
* Face verification

* Performance evaluation
Traditional face recognition

DNN face recognition

Facial label propagation
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Face
Recognition/identification

Problem statement:

« To identify a face identity
« Input for training: several facial ROIls per person
* Input for inference: a facial ROI
* Inference output: the face id

*
-p‘\ “  sandra Grant
Bullock

« Supervised learning
« . Applications:

Biometrics

Surveillance applications
Video analytics

i Who is he?
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Face verification

Problem statement:
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To verify a face identity
Input for training: several facial ROIs per person
Input for inference: a facial ROl and a person id
Inference output: yes/no

Sandra
Bullock

Supervised learning
Applications:

Biometrics

Surveillance applications
Video analytics




Face Recognition C\ZML
pipeline

* The basic pipeline that a Face Recognition system use.
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Face Recognition C\ZML
pipeline

* General face recognition process.

Recognition:
Detection —| Feature Extraction |—| Verification &
Identification
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Face Recognition C\ZML
pipeline

In face matching, there are two different tasks:

« Face Verification (FV):
* One-to-One comparison.

« Face Identification (FI):
* One-to-Many comparison.
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Face Recognition

—ace recognition/identification
—ace verification
Performance evaluation
Traditional face recognition
DNN face recognition

Facial label propagation

Artificial Intelligence &
Information Analysis Lab

(vmL



Training protocols and C\ZML
evaluation tasks

« Face Recognition Protocol and Evaluation Tasks
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Training protocols @ML

 |In terms of training protocol, FR model can be evaluated

under settings:
« Subject-dependent.
« Subject-independent.

« According to whether testing identities appear in training set
or not.
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Evaluation tasks @ML

* |In terms of testing tasks, the performance of recognition
model can be evaluated under settings:
« Face Verification.
* Close-set Face Identification.
* Open-set Face ldentification.
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Training protocols and

evaluation tasks

 Face Verification VS Face ldentification

Face Verification
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Face Identification

Probes include identities that
are not in the reference DB?

Nol

lYes

Closed set Open set
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Face Verification C\ZML
Evaluation tasks

* One-to-one comparison.

* Model has to decide whether two face images come from
the same person.
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Face Verification C\ZML
Performance Metrics

« False Match Rate (FMR):

* Proportion of non-mated samples (different subject), that are falsely
declared as match.

* True Match Rate (TMR) =1 - FMR.

« False Non-Match Rate (FNMR):

* Proportion of mated samples (same subject), that are falsely
declare to non-match.

* True Non-Match Rate (TNMR) =1 - FNMR.
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Face ldentification C\ZML

Evaluation tasks

« CLOSED-SET IDENTIFICATION:

* |nput is a face image corresponding to a subject which is known
Inside the reference database.

* Find the person within the database.

* One-to-N comparison, where N is the size of the reference
database.
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Face ldentification C\ZML
Performance Metrics

« CLOSED-SET IDENTIFICATION:

 |dentification rate at rank r:
« The probability that a transaction by a user enrolled in the system
» User’s true identifier within the top r matches returned.

« When a single point identification rank is reported, it should be referenced
directly to the database size.

« Example: “The identification rate at rank 1 was 95 % against a database of
250 entries”.
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Face ldentification C\ZML
Evaluation tasks

« OPEN-SET IDENTIFICATION:
* Inputis:
« [Face image corresponding to a subject:
» Exist.
« Do not exist in the database.
« Output is:
« The identity of the search subject within the database.
« Or a notification that the person has not been found in the database.
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Face ldentification VML
Performance Metrics

* OPEN-SET IDENTIFICATION:

* (True positive) identification rate at rank r:
* Probability that a transaction by a user enrolled in the system.
« user’s true identifier within the top r matches returned.

+ False-negative identification-error rate (FNIR):
* Proportion of identification transactions by users enrolled in the system.
» The user’s correct identifier is not included in the candidate list returned.
« False-positive identification-error rate (FPIR):

« Proportion of identification transactions by users not enrolled in the system.
« For which a non-empty list of candidate identifiers is returned.
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Face Recognition @ML

« Face recognition/identification
* Face verification

* Performance evaluation
Traditional face recognition
DNN face recognition

Facial label propagation
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Face Recognition @ML

Two general approaches:
« Traditional methods
e Subspace methods

« Elastic graph matching methods.

«  DNN face recognition (state of the art)
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Face Recognition C\ZML

Subspace methods

* The original high-dimensional image space is projected onto a low-
dimensional one.

* Face recognition according to a simple distance measure in the low
dimensional space.

« Subspace methods: Eigenfaces (PCA), Fisherfaces (LDA), ICA, NMF,
Class Specific NMF (CSNMF).

- Main limitation of subspace methods: they require perfect face alignment
(registration).
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Face Recognition - NMF VML

« Original facial images are reconstructed using only additive combinations of the
resulting basis images.

« Combination weights: coefficients in H.

« Consistent with the psychological intuition regarding the objects representation in
the human brain (i.e. combining parts to form the whole).
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Face Recognition @ML

Elastic graph matching (EGM) methods

« Elastic graph matching is a simplified implementation of the Dynamic Link
Architecture (DLA).

 DLA represents an object by a rectangular elastic grid.
« A Gabor wavelet bank response is measured at each grid node.

« Multiscale dilation-erosion at each grid node can be used, leading to
Morphological EGM (MEGM).
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Face Recognition @ML

Output of normalized multi-scale dilation-erosion for nine scales.
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Face Recognition

—ace recognition/identification
—ace verification

Performance evaluation
Traditional face recognition
DNN face recognition

Facial label propagation
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Deep Face

Recognition/Verification

* |Introduction [1][2][3][4]|5]

« Traditional Face Recognition System [2]

« Deep Face Recognition pipe
« Deep Learning Models [1][3]
* Face Recognition Scenes [1]

ine [1][2][4]
4]

« Face Recognition Problems
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Deep Face C\ZML
Recognition/Verification

* Face recognition is a visual pattern recognition problem:

« The face/3D-object that is subject to varying:
 [llumination
* Pose
« EXpression
« Other factors that need to be identified based on acquired 2D images.

« Deep Neural Networks have advantages over traditional
algorithms (Eigenfaces, Fisherfaces, Bayesian, SVM, etc).
« Learning abllity, generalization and robustness
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Deep Face C\ZML
Recognition/Verification

 The main difference between traditional face recognition
systems and deep-based approaches lies in the feature
extraction algorithm:

» Features extracted in traditional systems:
* Are hand-crafted.
« Features extracted by the deep-based approaches:

» | earned by the neural network based on a pool of data
subjects which iIs used to train a network based on a
specific loss function.
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Deep Face Recognition C\ZML
pipeline

training
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Deep Face Recognition C\ZML
pipeline

* Deep FR system with face detector and alignment:

« First, a face detector is used to localize faces.
« Second, the faces are aligned to normalized canonical coordinates.

« Third, the FR module is implemented.
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Deep Face Recognition C\ZML
pipeline

* Deep FR module in general:
« Face anti-spoofing recognizes whether the face is live or spoofed.
« Face processing is used to handle recognition difficulty before
training and testing.

 Different architectures & loss functions are used to extract
discriminative deep feature when training.

« Face matching methods are used to do feature classification when
the deep feature of testing data are extracted.
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Deep learning models @ML

« Convolutional neural networks (CNNSs).
« Auto encoder (AE).

« Restricted Boltzmann machine (RBM), Deep Belief
networks (DBNs), Deep Boltzmann machines (DBMS).

* Generative Adversarial Networks (GANS).
« Hybrid architectures.
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Modules of FR and
commonly used Methods

Loss

Architecture

Data Process

Data
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Deep Face Recognition C\ZML
Scenes

* Real World Scenes:
* Cross-factor FR.
 Heterogenous FR.
« Multiple (or single) media FR.
* FRin industry.
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Deep Face Recognition VML

Scenes

Cross-factor FR Heterogeneous FR

im0 ean

(a) cross-pose (b) cross-age (c) make-up (d) NIV-VIS (e) low resolution (f) photo-sketch

Multiple (or single) media FR FR in industry
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Zoom in examples: ! ’ J ":\ - 4 ol

(g) low-shot (h) template-based (i) video @G 3D (1) mobile devices (m) Partial
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Deep Face Recognition C\ZML
Scenes

* Cross-factor FR:
* Cross-Pose Face Recognition.
* Cross-Age Face Recognition.
« Makeup Face Recognition.
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Deep Face Recognition C\ZML
Scenes

* Heterogenous FR:
* NIR-VIS Face Recognition.

« Low-Resolution Face Recognition.
* Photo-Sketch Face Recognition.
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Deep Face Recognition C\ZML
Scenes

« Multiple (or single) media FR:
« Low-Shot Face Recognition.
« Set/Template-Based Face Recognition.
« Video Face Recognition.
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Deep Face Recognition C\ZML
Scenes

* FR In industry:
« 3D Face Recognition.
« Partial Face Recognition.
« Face Anti-attack.
« Face Recognition for Mobile Devices.
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Face Recognition
Problems

 Still Image-based face recognition (SIFR).

Video-based face recognition (VFR).
« Heterogeneous face recognition (HFR).

* Image set-based face recognition (ISFR).

« Hard mining.
Closed-set vs. open-set face recognition.
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Face Recognition @ML

« Face recognition/identification
* Face verification

* Performance evaluation
Traditional face recognition
DNN face recognition

Facial label propagation
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Facial label propagation

Problem statement:

- To transfer labels from labeled to unlabeled
facial images

* Input: a) labeled facial ROls,
b) unlabeled facial ROIs
« Output: facial image labels

Sandra
Bullock

«.Semi-supervised learning
« Applications:
Biometrics

Surveillance applications
Video analytics
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Label propagation on
facial videos @ML

Problem description:

* Person identity label propagation on stereo facial images, starting from a
small set of data with known label.

« The facial images are automatically extracted from the video by
performing automatic face detection and tracking to the left and right video
channel
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Label propagation on facial C\ZML
videos

« Label propagation is a label diffusion process from a small set
of labeled data X; = {x;};*, to a larger set of unlabeled data
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Label propagation on facial @ML
videos

 In cases where the data can be represented in more than one feature
spaces, one graph can be constructed for each representation method.

« The fusion of multiple data representations can be performed:
« at the graph construction level (early fusion).
 at the decision taking level (late fusion).

« The performance of label propagation algorithms depends highly on
« The data representation method (the data graph construction);
« The selection of the initially labeled data set.
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Q& A

Thank you very much for your attention!

More material in
http://icarus.csd.auth.gr/cvmlsweb-lecture-series/ /

Contact: Prof. |. Pitas ——
pitas@csd.auth.gr

| | Attificial Intelligence & .
Information Analysis Lab



