Face De-identification for CML privacy protection summary

Dr. V. Mygdalis, E. Chatzikyriakidis, Prof. I. Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 3.3

Face De-identification for privacy protection

- Privacy and data protection
- Classical face de-identification
- Autoencoder-based Face De-identification
- GAN-based de-identification
- Adversarial face de-identification
- K-anonymity attacks
- SVDD Adversarial Defense

Privacy and data protection

- Protection of personal data must be ensured in the acquired video and/or images.
- The EU's General Data Protection Regulation 2016/679), repealing the 1995 Data Protection Directive.
- "Member States shall protect the fundamental rights and freedoms of natural persons and in particular their right to privacy, with respect to the processing and distribution of personal data."

Data protection issues in Autonomous Systems

- Public perceives AS as machines infringing privacy.
- No trespassing above private property.

- Distinguish between:
 - actors, spectators, crowd
 - public events, private events.

Data protection issues in drones

- broadcasting
- creating experimental databases.
- Use of data de-identification algorithms when doing AV shooting.

ML

Data anonymity requirements in AV data bases

- Data to be distributed must be *anonymous*:
 - Any evidence that can be used to link acquired data to real people, is prohibited (e.g., address, names, etc.).
 - Facial images fall into the same category. They cannot be anonymous, since someone could link a facial image to a real person.
 - Soft biometric and non-biometric identifiers (fancy clothes, tattoos, skin marks, etc.) should be hindered as well.

Data anonymity requirements in AV data bases

- Image and video data collected by drones fall into the general data acquisition/shooting/distribution category.
- Consent forms must be collected for experimental AV data.
- Standard AV shooting privacy-protection rules must be observed for AV data to be broadcasted.

Facial data protection approaches

- *Face de-detection* (Face detector obfuscation):
 - Apply image manipulations until face detection algorithms are no longer able to work
- Face de-identification (Face recognizer obfuscation):
 - Corrupt the facial region so that deep NN face classifiers fail.
 - Developed methodology:
 - Simple/Naive approaches (additive noise, impulsive noise)
 - Reconstruction-based (SVD, PCA, hypersphere projections, autoencoder-based) approaches.

• Adversarial face de-identification.

Personal image protection approaches

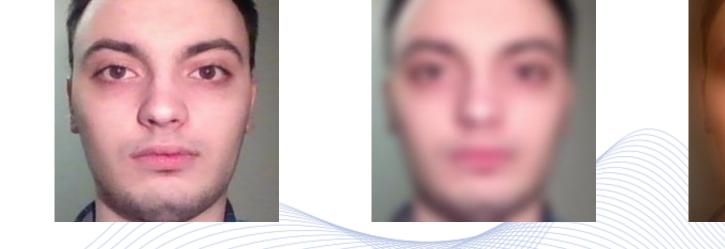
- Person de-detection
- Person de-identification
 - Human body images
- Personal object de-detection/de-identification
 - · Car plates, car make.

ML

Face De-identification for privacy protection

- Privacy and data protection
- Classical face de-identification
- Autoencoder-based Face De-identification
- GAN-based de-identification
- Adversarial face de-identification
- K-anonymity attacks
- SVDD Adversarial Defense

Facial data protection approaches



Gaussian blur with std. deviation of 5

Hypersphere projection with radius of 8

Original Image

Face De-identification definitions

Face de-identification (DID) or *Face recognition obfuscation* tries to fool machine face recognition systems and/or face recognition by humans:

- Recognition by *machines or humans* (darkening, blurring, pixilation, additive noise methods, reconstruction-based methods, GAN-based methods)
- Machine recognition only (adversarial attacks).
- Focus on machine recognition obfuscation.

Face De-identification definitions

Simple face de-identification definition:

- A trained face recognition system f take an input facial image \mathbf{x} and predicts its corresponding identity label $y: f(\mathbf{x}; \mathbf{\theta}) \rightarrow y$.
- Face de-identification methods aim to alter the original facial image x and produce a de-identified image x_p that can no longer be correctly identified: f(x_p; θ) → ?.

 \mathbf{X}_{n}

de-identification

Face De-identification definitions

Formal face de-identification definition:

- Let $\mathbf{x} \in \mathbb{R}^n$ be a vector containing e.g., a *facial image Region of Interest* (ROI) representation with $y \in \{C_1, ..., C_m\}$ its label. Function $f(\mathbf{x}; \mathbf{\theta}) = y$ is the ML recognizer/classifier.
- Face de-identification is about manipulating input vector x in some way, such as:
 - Perturbation: $\mathbf{x}_p = \mathbf{x} + \mathbf{p}$ (e.g., noise, pixelation, blurring, adversarial attacks)

 $f(\mathbf{x}_n; \mathbf{\theta}) \neq y.$

- Transformation: $\mathbf{x}_p = \mathbf{S}\mathbf{x} + \mathbf{p}$ (e.g., reconstruction methods)
- Generative mapping function: $\mathbf{x}_p = \mathbf{G}(\mathbf{x}; \mathbf{\theta}_G): \mathbb{R}^n \mapsto \mathbb{R}^n$, (AE, GANS)
- They all force the face identifier to fail:

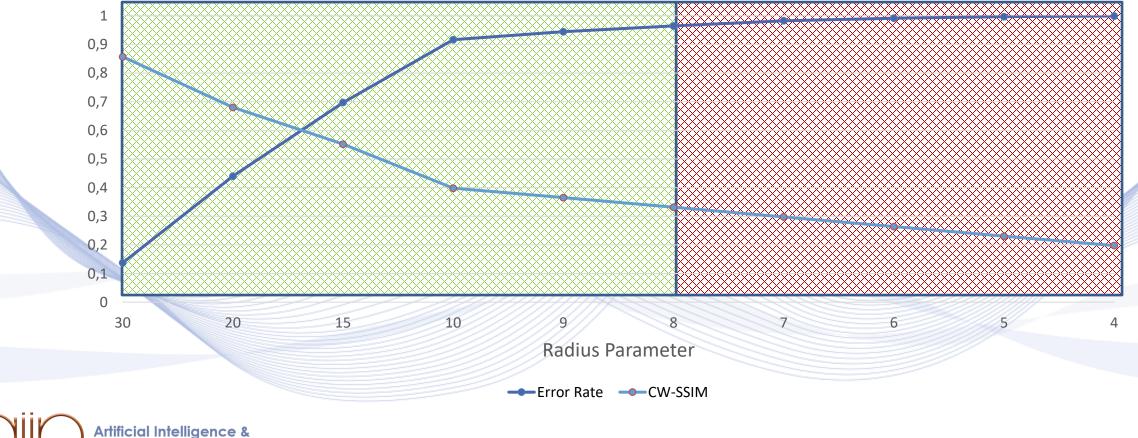
Acceptable Image Quality Issues

Original Image

Gaussian blur with std. deviation of 5 Hypersphere projection with radius of 8

Trade-off between deidentification performance and facial image quality

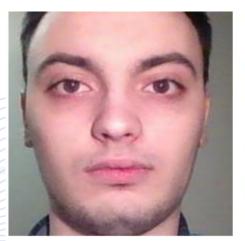
Projection De-Identification

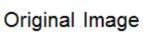


Information Analysis Lab

Face de-identification methods

 Naïve face de-identification refers to applying additive noise (e.g., Gaussian, impulse) to or blur the (detected) input facial image region, until the system fails to detect/classify the face.





25

Gaussian blur with std. deviation of 5

Face de-identification methods

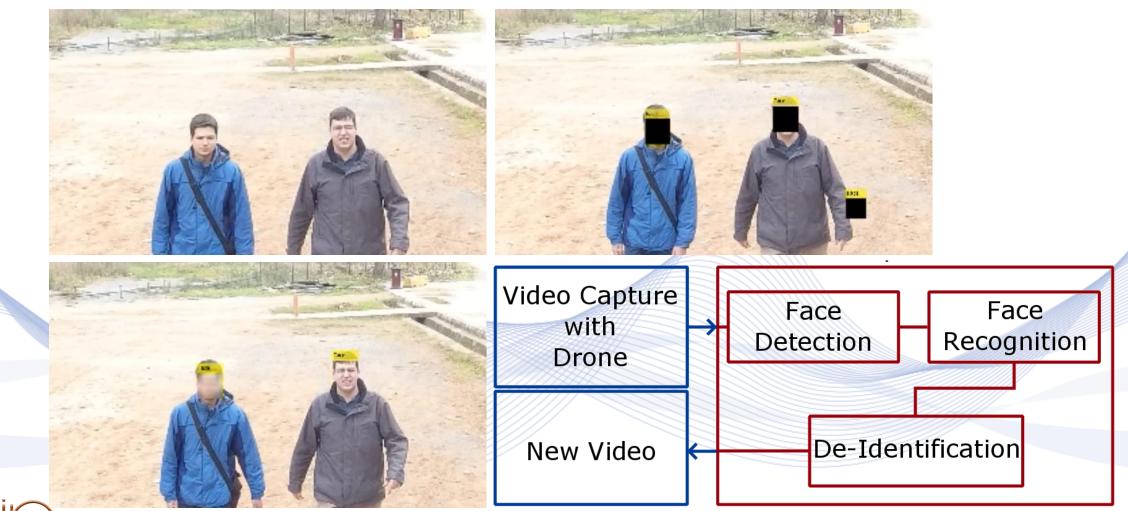
Reconstruction-based face DID approaches:

- Obtain facial image coefficients using some reconstruction method (e.g., PCA, SVD, Autoencoder).
- Apply modifications to these coefficients.
- Reconstruct a distorted facial image.

Hypersphere projection with radius

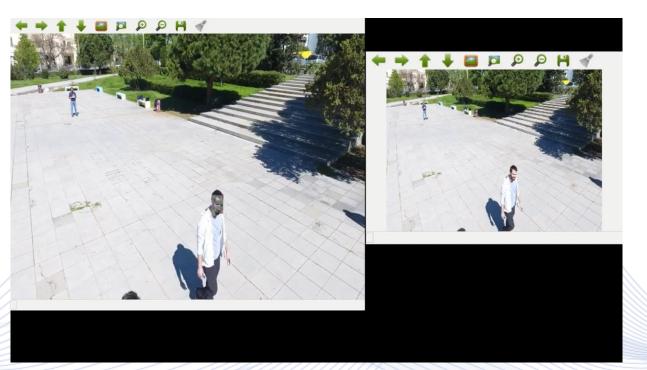
Original Image

Face de-identification on drone videos



Artificial Intelligence & Information Analysis Lab

Face de-identification on drone videos



SVD-DID face de-identification in a drone video.

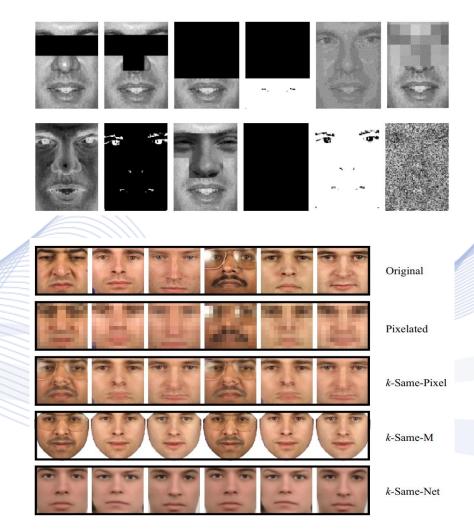
Face de-identification methods

Drawbacks of previous face DID methods:

• They strongly alter original facial images.

Desirable face DID method properties against machines:

 De-identified image should retain the unique original facial image unique characteristics (e.g., race, gender, age, expression, pose).



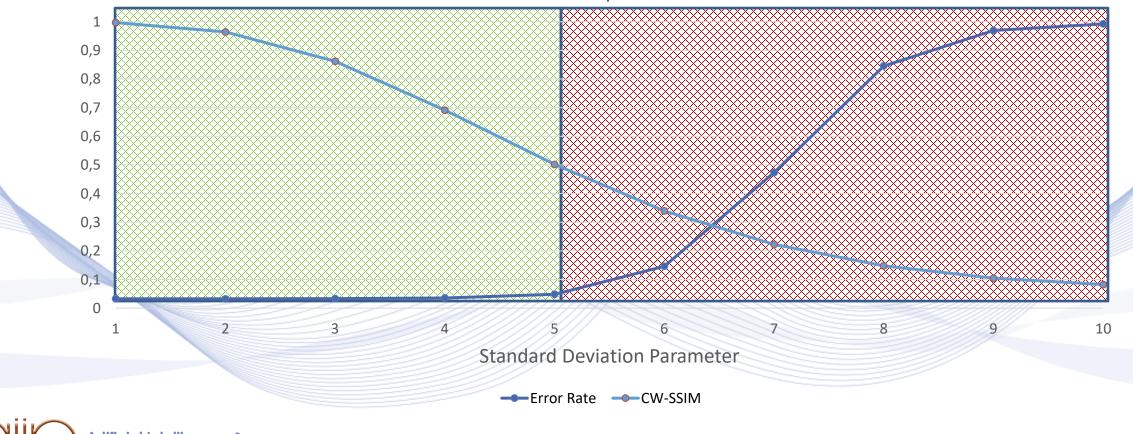
Acceptable Image Quality Issues

Original Image

Gaussian blur with std. deviation of 5 Hypersphere projection with radius of 8

Trade-off between deidentification performance and facial image quality

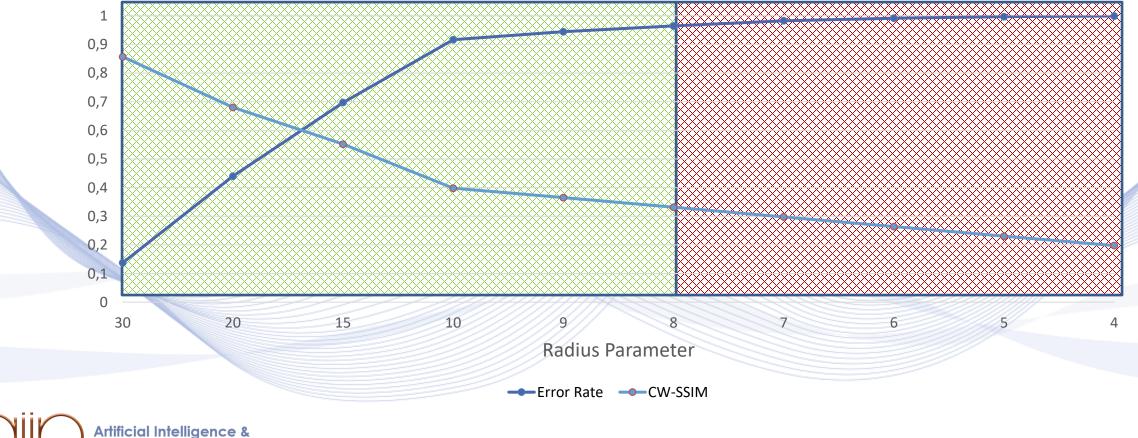
Gaussian Blur performance



Artificial Intelligence & Information Analysis Lab

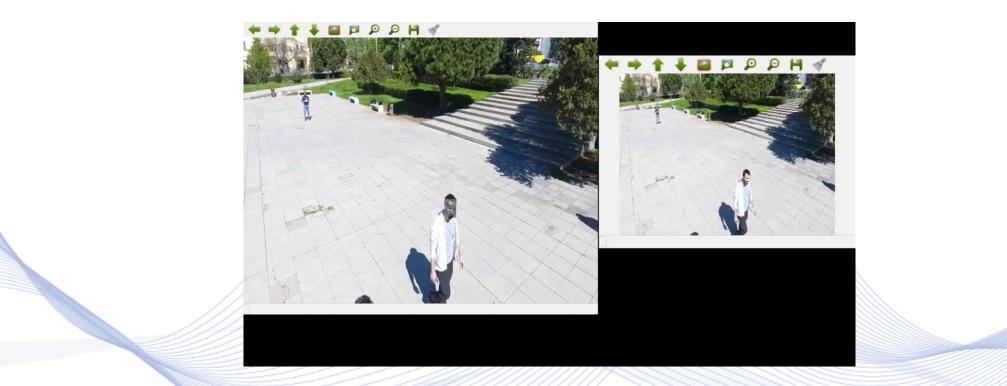
Trade-off between deidentification performance and facial image quality

Projection De-Identification



Information Analysis Lab

SVD-DID



• Face de-identification in video.

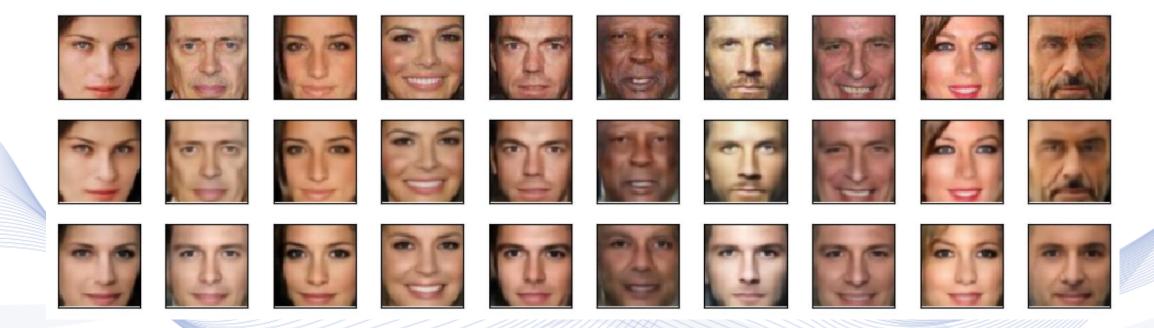
Face De-identification for privacy protection

- Privacy and data protection
- Classical face de-identification
- Autoencoder-based Face De-identification
- GAN-based de-identification
- Adversarial face de-identification
- K-anonymity attacks
- SVDD Adversarial Defense

Autoencoder-based Face De- **CML** identification

- Originating from reconstruction-based methods.
- Leverage deep autoencoders or even GANs for generating "fake" image content, that is recognizable neither by machines and humans.
- The de-identified facial image is produced by reconstruction, using a neural Autoencoder (AE).

Supervised Attribute Preserving Face DID



First row: original images; second row: images reconstructed by a standard AE, third row: Images reconstructed by Supervised Attributed Preserving DID.

Face De-identification for privacy protection

- Privacy and data protection
- Classical face de-identification
- Autoencoder-based Face De-identification
- GAN-based de-identification
- Adversarial face de-identification
- K-anonymity attacks
- SVDD Adversarial Defense

GAN-based face de-identification

GAN-based face de-identification extends AE-DID, by employing a Generator-Discriminator GD network pair, trained in an adversarial fashion. Given:

- source facial image \mathbf{x} to be de-identified and its true label y.
- target 'wrong' facial image t,
- **G** calculates a reconstruction $\mathbf{x}_p = \mathbf{G}(\mathbf{x}, \mathbf{t}; \mathbf{\theta}_G)$ by:
 - minimizing the discrepancy between \mathbf{x}_p and \mathbf{t} or
 - by "learning the translation" of x to t.

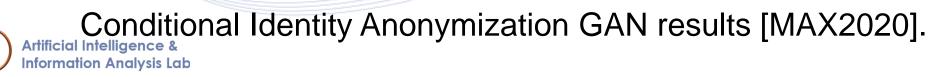
GAN-based face de-identification

- $\hat{d} = D(\mathbf{x}_p; \mathbf{\theta}_D)$ is a binary discriminator of whether \mathbf{x}_p follows the distribution of **t**, or not.
 - x, t could be images belonging to the same class, or even completely different ones.
- If we feed the de-identified image \mathbf{x}_p to a trained face recognizer $f(\mathbf{x}_p; \mathbf{\theta})$, it should not be able to identify it correctly $f(\mathbf{x}_p; \mathbf{\theta}) \neq y$.
- This pipeline leads to even more realistic image generations, when compared to AE-based de-identification.

32

GAN-based face de-identification

Live face de-identification in video [GAF2019].



GAN body image de-identification **CML**

Generative Full Body and Face De-Identification [BRK2017].

Face De-identification for privacy protection

- Privacy and data protection
- Classical face de-identification
- Autoencoder-based Face De-identification
- GAN-based de-identification
- Adversarial face de-identification
- K-anonymity attacks
- SVDD Adversarial Defense

Adversarial attacks & Defenses

Adversarial Attacks modify facial images to be wrongly identified.

• They may be employed for privacy protection.

Adversarial Defenses modify face recognition pipeline modules to make the pipeline robust to adversarial attacks.

• They be employed for content protection against adversarial attacks (e.g., copyright protection systems).

Adversarial Face deidentification

36

- Such methods perform de-identification by applying adversarial attacks on trained deep NN face recognizers.
- Adversarial attacks may be:
 - Targeted or un-targeted.
 - White-box or black box.
 - Iterative or single-step.
 - Transferable to different NN architectures/classification methods.
- The de-identified image is produced by returning gradient from a trained NN to the input facial image directly.

• They produce imperceptible facial image perturbations by humans.

Adversarial Face De-Identification

Iterative Fast Gradient Value Method (I-FGVM):

- Let images x have normalized pixel values in the domain [0,1].
- The gradient descent update equations have the form:

$$\mathbf{x}_{p}^{0} = \mathbf{x},$$
$$\mathbf{x}_{p}^{i+1} = \operatorname{clip}_{[0,1]} \left(\mathbf{x}_{p}^{i} - \alpha \nabla_{\mathbf{x}} J(\mathbf{x}_{p}^{i}, \mathbf{t}) \right).$$

- α is the step size, x is the original image, xⁱ_p is the adversarial image at step i,
- $J(\mathbf{x}_p^i, \mathbf{t})$ is the adversarial loss,
- t is the target output vector class related to label target label t and
- $\operatorname{clip}_{[a,b]}$ is a constraint that keeps pixel values in the [a,b] range.

Adversarial Face De-Identification

Model A

Model B

First row: original image; Second row: de-identified image. Third row: adversarial perturbation absolute value (x10) [CHA2019].

Artificial Intelligence & Information Analysis Lab

38

Face De-identification for privacy protection

- Privacy and data protection
- Classical face de-identification
- Autoencoder-based Face De-identification
- GAN-based de-identification
- Adversarial face de-identification
- K-anonymity attacks
- SVDD Adversarial Defense

k-Anonymity-inspired adversarial attack

k-anonymity concept:

- The maximum probability of retrieving a sample from a set must be less than 1/k.
- Originally introduced in other research areas (e.g., Database research).
- In k-anonymity-inspired adversarial attack, the concept is altered as follows:
 - The maximum probability of retrieving the real person identity must be less than 1/k, in every possible face classifier output ranking position.

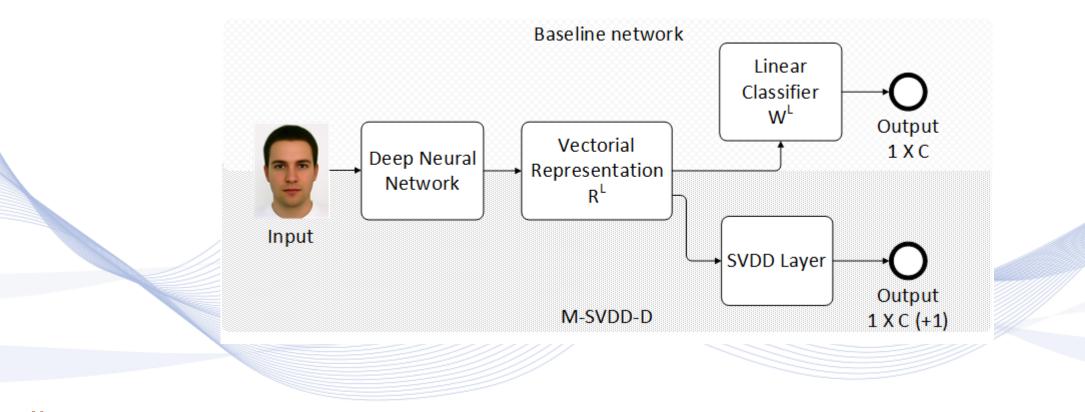
Face de-identification: original images (1^{st} , 3^{rd} , 5^{th} row), magnified de-identification noise for various methods (2^{nd} , 4^{th} , 6^{th} row, $k - A^3$ 3 right columns).

Artificial Intelligence & Information Analysis Lab

Face De-identification for privacy protection

- Privacy and data protection
- Classical face de-identification
- Autoencoder-based Face De-identification
- GAN-based de-identification
- Adversarial face de-identification
- K-anonymity attacks
- SVDD Adversarial Defense

m-SVDD Adversarial Defense



Bibliography

[MYG2020] V. Mygdalis, A. Tefas and I. Pitas, "*K-anonymity inspired Adversarial Attack and M-SVDD Defense*", Neural Networks, Elsevier, vol. 124, pp. 296-307, 2020

[NOU2019] P. Nousi, S. Papadopoulos, A.Tefas and I.Pitas, "*Deep autoencoders for attribute preserving face de-identification*", Elsevier Signal Processing: Image Communication, 2019

[CHA2019] E. Chatzikyriakidis, C. Papaioannidis and I.Pitas, "*Adversarial Face De-Identification*" in Proceedings of the IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 2019 [PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.

[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).
[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.
[NIK2000] N. Nikolaidis and I. Pitas, "3D Image Processing Algorithms", J. Wiley, 2000.
[PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

Bibliography

[SZE2013] Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199. 2013 Dec 21.

[BRK2017] Brkic, K., Sikiric, I., Hrkac, T., & Kalafatic, Z. *"I Know That Person: Generative Full Body and Face De-Identification of People in Images",* Proc. CVPR, 2017

[GAF2019] Gafni, Oran, Lior Wolf, and Yaniv Taigman. "*Live face de-identification in video.*" Proc. IEEE International Conference on Computer Vision, 2019.

[MAX2020] Maximov, Maxim, Ismail Elezi, and Laura Leal-Taixé. "CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks." Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

