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Introduction to Explainable AI

Machine and Deep Learning have surpassed humans in many tasks ( image and 

speech recognition, recommendation systems, medical diagnosis)

Drawbacks:

• Machine learning (ML) architectures are usually considered as blackbox models
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Introduction to Explainable AI

• Deep learning (DL) have achieved outstanding performance but they don’t 

justify their reliability

• Failure

• An error in any moment of a self-driving car can lead to a fatal crash. 

• in the medical area, human lives may be  dependent on these decisions
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Introduction to Explainable AI

Issues

• responsibility for bad AI decisions

• explain errors of AI decisions  

• improvenment of AI models

Solution: Explainable AI models easily understandable by humans
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Introduction to Explainable AI

Solution: Explainable AI models easily undertndable by humans
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Interpretability

How easily we can understand the cause of an algorithm’s decision or action 

The categorization of Interpretability methods is based  on how interpretable 

information is provided.  

Categories:

• Visual  Interpretability (“obviously” interpretable information, easily perceived 

from human eye

• Textual Explanations (Given in form of text)

• Mathematical-Numerical Explanations
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Types of Interpretability Methods

[Vilone2020] Categorization of explainability methods
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Visual Explanations

• Visual explainable methods produce pictures or maps in order to provide 

information about the model’s decision

• Most common: Saliency methods explain results of  model by producing  

outputs to show which  components are responsible. 

• These values take the form of output probabilities or images like heatmaps.

• Plot visualization methods produce scatter plots to explain decisions or visualize 

the data 
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Visual Explanations

• Methods

• CAM (Class Activation Maps )

• Grad-CAM: Gradient based CAM

• LRP (Layer-wise Relevance Propagation)

• Peak Response Map (PRM)

• CLass-Enhanced Attentive Response (CLEAR)

• DeConvNet

• DeepResolve

• SCOUTER
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Class Activation Maps (CAM)

• Generate activation maps for a decision 

• Global average pooling layer is after convolutional layers

• The output features of the convolutional neural network are passed through a 

fully-connected layer that makes the prediction

• CAM indicates the region on the image that correspond to the prediction result
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Class Activation Maps(CAM)
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[Zhou2016] Overview of CAM 



Class Activation Maps(CAM)

[Zhou2016] Examples of CAM
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Grad-CAM: Gradient-based CAM

Gradient-weighted Class Activation Maps(Grad-CAM)

• an extended version of CAM by computing the gradients with respect to the 

target that flow to the final convolutional layer 

• produces a map, which highlights the most useful pixels for classification

Processing steps

• Forward pass of the input image to produce the prediction

• Gradients of the target class

• The gradients of the target are back-propagated to last convolutional layer 

• Find the important locations of the image
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Grad-CAM: Gradient-based CAM

[Selvaraju2017] Overview of Grad-CAM
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Grad-CAM: Gradient-based CAM

[Selvaraju2017] Examples of Grad-CAM
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Layer-wise Relevance Propagation 

(LRP)

• Decomposition of  the classification decision of a  DNN model in using the input

• The classification layer is decomposed into several layers 

• Backward pass to produce the pixel-wise conributions to the final output from 

last to first layers

• We denote as 𝑤(𝑖, 𝑗) the weight between of the connection from neuron 𝑖 to 

neuron 𝑗
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Layer-wise Relevance Propagation 

(LRP)

[Samek2016] LRP calculation for the input image
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Peak Response Map (PRM)

[Zhou2016] Overview of PRM
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Peak Response Map (PRM)

[Zhou2016] Examples of PRM
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CLass-Enhanced Attentive Response 

(CLEAR)

• Visualizes the decisions of image classification applications with attention maps 

produced by back-propagating the activations of the last layer

• After forward pass using deconvolutions we obtain the deconvolved output    

𝐡(𝑙) = σ𝑘=1
𝐾 𝑧 𝑘, 𝑙 ∗ 𝑤(𝑘, 𝑙)

𝑘: kernel index 𝐳 𝑙 : feature maps of layer 𝑙, 𝐰 𝑙 : kernel weights, 𝐾 kernels

• Final response of layer 𝑙 is  the product: 𝐑 𝑙 = 𝐡 1 𝐡 2 …𝐡(𝑙)

• Compute individual attention maps 𝐑(𝐱′, 𝑐) of class 𝑐 and back-projected input 𝐱′
from all 𝐿 layers of the deconvolutional network as :

𝐑 𝐱′, 𝑐 = 𝐡 1 𝐡 2 …𝐡(𝐿)
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CLass-Enhanced Attentive Response 

(CLEAR)

22[Kumar2017] CLEAR method 



DeConvNet

• A deconvnet is actually a convnet model with the same convolutional layers but 

in reverse since it maps pixels to features

• Deconvet is used here to generate the input images from features

• Following operations are adopted:

• Trsnspose Convolution (deconvolution):
• Use transposed learned  filters of cnn to reconstruct the input of the layer from the 

output

• Unpooling
• record maximum values locations during maxpooling and use the locations to 

reconstruct input during deconvolution
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DeConvNet

[Zeiler2014] Reconstruction of the convnet  features up to the pixel space
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DeConvNet

[Zeiler2014] Visualization of intermediate layers
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DeepResolve

• Generate intermediate layer heatmaps to show  how the network combines 

features for classification 

• Compute optimized feature map 𝐇𝐜 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐇𝑆𝑐 𝐇 − 𝜆 𝚮
2

2
, 𝑆𝑐 is the score 

of class 𝑐 obtained from the last layer, 𝜆 tunable hyperarameter and 𝐇 ∈ 𝐑𝐾×𝑊

• Global average of Feature Importance Maps (FIM) 𝐇𝐜 to obtain feature 

importance vector (FIV)  𝚽𝐜 = 𝜑𝑐
1, …𝜑𝑐

𝑘 where 𝜑𝑐
𝑘 =

1

𝑊
σ𝑖=1
𝑊 𝐻𝑘(𝑖)

𝑐

• This procedure is ran 𝑇 times with different initial parameters to get several 

estimations of 𝐇𝐜
𝒕 and 𝚽𝐜

𝒕
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DeepResolve

[Liu2019] Working flow of DeepResolve 27



DeepResolve

[Liu2019] Generation of importance vectors
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SCOUTER

• Explain the reasons an image is classified or not to a specific class

• The cnn’s classifier (fully connected layer) is replaced with a slot attention model

• Each slot produces a confidence score for each class

• The cnn’s features 𝐅 are passed through a convolutional layer and a position 

embedding to model the spatial information

• Then, a self-attention mechanism is utilized to compute the weighted sum of 

features as: 𝐀(𝑡) = 𝜎(𝑄(𝐖 𝑡 )𝐾(𝐅))

• 𝜎: sigmoid function  𝑄, 𝐾: fully-connected networks 𝐖 𝑡 : slot weights
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SCOUTER

[Li2020] SCOUTER overview
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SCOUTER

[Li2020] Examples of positive and negative decisions
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Visual explanation of deep neural 

networks by interpretation

• Identification  of relevant features to the predictions of the network 𝐹

• Forward-propagation  of 𝑁 training images to obtain 𝑚–dimensional  features 

𝐗 = (𝐱1, 𝐱2…𝐱𝑁) ∈ R𝑁×𝑚

• Target labels 𝐋 = (𝐥1, 𝐥2, … 𝐥𝑁) ∈ R𝐶×𝑁

• Predict a linear combination of activations 𝐗 for each class using 

𝐖 = (𝐰1, 𝐰2, …𝐰𝑁) ∈ R𝐶×𝑚

by solving the  optimization problem :

𝐖∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝐖 𝐗𝐓𝐖− 𝐋𝐓
𝐹

2
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Visual explanation of deep neural 

networks by interpretation

33

[Oramas2019] Overview of training and testing pipeline



Plot visualizations 

• Produce scatter plots to explain decisions or visualize the data 

• Methods

• t-SNE

• Understanding deep features using PCA

• Visualization of hidden layers

• TreeView
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t-distributed stochastic neighbor 

embeddings (t-SNE)

[Maaten2008] Visualization of MNIST
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Visualization of hidden layers

• 2D scatter-plot the projections of the hidden neurons’ activation coloured

according to the class

• Dimensionality reduction and visualization of:  

• observations

• neuron’s relationships

• Clustering of  activations in groups to explain predictions
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Visualization of hidden layers
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[Rauber2016]T-SNE projection of  neurons and classes on MNIST test set



Understanding deep features using 

PCA

• analyzes CNN feature responses  of layers with decomposition into a linear 

combination of principal components using knowledge from the input scene 

• Given 

• an image 𝑟𝜃 from a set 𝛀 with Θ images indexed from 𝜃 ∈ [1, Θ]

• features ෠𝐅𝐿(𝑟𝜃) of the 𝐿𝑡ℎ layer of  CNN

• Calculate centered features 𝐅𝐿(𝑟𝜃) = ෠𝐅𝐿 𝑟𝜃 −
1

Θ
σ𝑡=1
Θ ෠𝐅𝐿(𝑟𝑡)

• 𝑟𝑡: 𝑡 image from set 𝛀

• Compute eigenvectors of the covariance matrix:

1

Θ
෍

𝜃=1

Θ

𝐅𝐿 𝑟𝜃 𝐅𝐿 𝑟𝜃
𝐓

38



Understanding deep features using 

PCA

39

[Aubry2015] PCA embeddings based on different factors



TreeView

• Hierarchical decomposition of the feature subspaces

• Transformation 𝑇1: 𝐗 → 𝐘 input from space:  𝐗 into new space of features: 𝐘 ,

• Transformation 𝑇2: 𝐘 → 𝐙 classify features 𝐘 to label space 𝐙

• Partition space of features: 𝐘 into 𝐾 subspaces with similar  activations of the 

hidden layers

• Each cluster 𝑖 describes a specific factor 𝑆𝑖
• A new 𝐾-dimensional vector from cluster labels is constructed and used for 

visualization
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TreeView

41[Thiagarajan2016]  TreeView method 



TreeView

42

[Thiagarajan2016] Visualization of a correctly classified example for each 

factor



Textual explanations

• Produce natural language-text to explain the decisions of the algorithm

• Find semantic words that provide qualitative explanations

• Methods

• Cell Activation Value

• InterpNET

• Hierarchical Question and Image Co-Attention for Visual Question 

Answering

• Visual Dialog

• Explain Deep Neural Networks with Semantic Information
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Cell Activation Value

[Karpathy2015] activations of LSTM. Text color corresponds to activation value
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InterpNET

[Barratt2017] Overview of Interpnet
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InterpNET

[Barratt2017] Examples of InterpNet text generations 46



Hierarchical Question-Image Attention 

for Visual Question Answering

[Lu2016] Types of attention 
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Hierarchical Question-Image Attention 

for Visual Question Answering

48

[Lu2016]  Example of attention 

maps



Visual dialog

[Das2018] Visual dialog system to predict the answer
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Visual dialog

50
[Das2018] Dialog of AI and human



Semantic explanation of Deep Neural 

Networks

51
[Dong2017] Overview of the method



Semantic explanation of Deep Neural 

Networks

[Dong2017] Video captioning encoder’s training process along with human 

descriptions decoder
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Numerical Explanations

• Provide numerical outputs to interpet models 

• Train classifiers that explain the model

• Concept Activation Vectors

• Linear classifier probes

• LIME
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Concept Activation Vectors (CAV)

[Kim2018] Overview of CAVs learning process
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Linear classifier probes
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[Alain2016] Prediction error of each layer using probe 



LIME (Local Interpretable Model-

agnostic Explanations)

[Ribeiro2016] The data represented with the red cross 

is explained locally using the dashed line.



Applications

of explainable methods in important tasks

• Autonomous Driving

• Advisable Learning for Self-driving Vehicles by Internalizing Observation-to-Action 

Rules

• Explaining Autonomous Driving by Learning End-to-End Visual Attention

• Medical Applications

• COVID detection
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Explainable Object-induced Action 

Decision for Autonomous Vehicles

• Explainable autonomous driving architecture

• Global module to generate scene context

• Local module to predict actions and explanations

• Concatenation of the two modules to improve decision accuracy 

• Predict next action such as ( stop, turn left, go forward) and the explanations 

e.g. Stop, the traffic light is red , an obstacle is in front stop the car)
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Explainable Object-induced Action 

Decision for Autonomous Vehicles

[Yu2020] Overview of the proposed explainable self-driving method
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Explainable Object-induced Action 

Decision for Autonomous Vehicles

60

[Yu2020] Examples of action and explanations of the system



Advisable Learning for Self-driving 

Vehicles by Internalizing Observation-

to-Action Rules
• Explainable self-driving system

• Human advice integrated on the architecture

• Visual (attention maps) and textual explanations (sentences)

• Main modules

1. Object segmentation encoder

2. Vehicle controller

3. Observation generator

4. Action generator
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Advisable Learning for Self-driving 

Vehicles by Internalizing Observation-

to-Action Rules

62[Kim2020] Workflow of the self-driving system



Explainable Pulmonary Disease and 

COVID-19 Detection from X-rays

• Deep convolutional network VGG-16 is used to distinguish between healthy 

lungs, pneumonia or covid-19

• Grad-CAM provides interpets decisions by visualizing feature maps

• Localize areas responsible for the detection of pneumonia or covid-19
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Explainable Pulmonary Disease and 

COVID-19 Detection from X-rays

64[Brunese2020] CNN architecture



Explainable Pulmonary Disease and 

COVID-19 Detection from X-rays

[Brunese2020] Response maps of input chest x-ray
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Explainable AI frameworks

with implemented explainable methods can be used for interpetation

• iNNvestigate Neural Networks

• ExplAIner

• InterpretML
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iNNvestigate Neural Networks

[Alber2019] Usage Example of iNNvestigate Neural Networks
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ExplAIner

68

[Spinner2019] General approach of explAIner



InterpretML

69

[Nori2019] Example of InterpetML usage
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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