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Introduction to Explainable Al (VML

Machine and Deep Learning have surpassed humans in many tasks ( image and
speech recognition, recommendation systems, medical diagnosis)
Drawbacks:

Machine learning (ML) architectures are usually considered as blackbox models

[ Training Data HLearning Stage}—f—
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Introduction to Explainable Al (VML

Deep learning (DL) have achieved outstanding performance but they don'’t
justify their reliability
Failure
- An error in any moment of a self-driving car can lead to a fatal crash.
In the medical area, human lives may be dependent on these decisions
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Introduction to Explainable Al (VML

Issues
« responsibility for bad Al decisions
* explain errors of Al decisions
* Improvenment of Al models

Solution: Explainable Al models easily understandable by humans

Y »

New learnin New
Training Data J Explainable Prediction
process
model

—
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Introduction to Explainable Al

wWhy is this a car?
ow did you predict that ?

Training Data

2D CNN
raining stage )
Input
ES Training Data — Yes, I understand why !! :D
|
Car
1. It has wheels, lights ...
raining stage Explainable model

2. Visual features obtained from
model
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Interpretability @ML

How easily we can understand the cause of an algorithm’s decision or action
The categorization of Interpretability methods is based on how interpretable
Information is provided.

Categories:
Visual Interpretability (“obviously” interpretable information, easily perceived
from human eye

Textual Explanations (Given in form of text)
Mathematical-Numerical Explanations
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Types of Interpretability Methods

Ante-hoc Model agnostic
—=Stage 4'{ 4,—-—{‘
»Post-hoc ~—»Model specific

l:l —+Scope {Global e
“ o l_'Regression
H 0O >Problem type
0o _’Numen?al/ Numerical
m Categorical
. ~—Input dat _.;*—’Pictorial Rules
nput data Weke . gl
~—+Time serie Visual
——+>Mixed

—>OQutput format

[Vilone2020] Categorization of explainability methods

| | Artificial Infelligence &
Information Analysis Lab

VML



Visual Explanations (VML

* Visual explainable methods produce pictures or maps in order to provide
information about the model’s decision

« Most common: Saliency methods explain results of model by producing
outputs to show which components are responsible.
« These values take the form of output probabilities or images like heatmaps.

* Plot visualization methods produce scatter plots to explain decisions or visualize
the data
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Visual Explanations

* Methods

- CAM (Class Activation Maps )
Grad-CAM: Gradient based CAM
LRP (Layer-wise Relevance Propagation)
Peak Response Map (PRM)
ClLass-Enhanced Attentive Response (CLEAR)
DeConvNet

DeepResolve
SCOUTER
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Class Activation Maps (CAM) @ML

Generate activation maps for a decision
Global average pooling layer is after convolutional layers

The output features of the convolutional neural network are passed through a
fully-connected layer that makes the prediction

CAM indicates the region on the image that correspond to the prediction result
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Class Activation Maps(CAM)
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[Zhou2016] Overview of CAM
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Class Activation Maps(CAM)

Cleaning the floor

[Zhou2016] Examples of CAM
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Grad-CAM: Gradient-based CAM @ML

Gradient-weighted Class Activation Maps(Grad-CAM)
an extended version of CAM by computing the gradients with respect to the
target that flow to the final convolutional layer
produces a map, which highlights the most useful pixels for classification

Processing steps
Forward pass of the input image to produce the prediction
Gradients of the target class
The gradients of the target are back-propagated to last convolutional layer
Find the important locations of the image
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Grad-CAM: Gradient-based CAM @ML

--------------------

E <«—— Gradients A " ¢ |Tiger Cat
| T XoRiss ¢ A " Image Classification
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Guided Backprop Feature Maps - _.--~ .
. - . —>
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id ! (or)
Guided Grad-CAM _
/ e =
Is there a cat? w Visual
ST RNNJLSTM ReLayes Question Answering
C |Yes
Grad-CAM _y— (or)

[Selvaraju2017] Overview of Grad-CAM
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Grad-CAM: Gradient-based CAM @ML

[Selvaraju2017] Examples of GradQCAI\/I_
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Layer-wise Relevance Propagation (V:ML
(LRP)

Decomposition of the classification decision of a DNN model in using the input

The classification layer is decomposed into several layers

Backward pass to produce the pixel-wise conributions to the final output from
last to first layers

- We denote as w(i, ) the weight between of the connection from neuron i to
neuron j
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Layer-wise Relevance Propagation (V:ML
(LRP)

[Samek2016] LRP calculation for the input image
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Peak Response Map (PRM) VML

Query Rank = =>

“o “-
? n Peak Stimulation
i‘. é » ;

Network
Classifier

Training

8 C C C -
: =t I - R [ B
5 . ‘. 4
"_E | v {} “ /
Segment
i - Proposals
Peak Response Map a ReakiReckpropagation Prediction
Generation of Peak Response Map Weakly Supervised Instance Segmentation

[Zhou2016] Overview of PRM
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Peak Response Map (PRM)

Image Peak Response Map
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CLass-Enhanced Attentive Response C
(CLEAR) ViL

* Visualizes the decisions of image classification applications with attention maps
produced by back-propagating the activations of the last layer

* After forward pass using deconvolutions we obtain the deconvolved output
h()) = ¥, 2(k, 1) * w(k, 1)
k: kernel index z(l): feature maps of layer I, w(l): kernel weights, K kernels
* Final response of layer lis the product: R(I) = h(1)h(2) ...h(])

* Compute individual attention maps R(x’,¢) of class ¢ and back-projected input x’
fromall L layers of the deconvolutional network as :

R(X,c) = h(1)h(2) ...h(L)
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CLass-Enhanced Attentive Response

(CLEAR)

9®

@
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== @ " output
Global .
avg
pooling _ .

Deconvolution

Dominant Class
Attentive Map

ClLass Enhanced
Attentive Response
(CLEAR) Map

-+ p—
Dominant Response
Map

Individual Response
maps
R(x|c) _
D, (x)
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Informetion Analysis Lab [Kumar2017] CLEAR method
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DeConvNet

A deconvnet is actually a convnet model with the same convolutional layers but
INn reverse since it maps pixels to features

Deconvet is used here to generate the input images from features
Following operations are adopted:

Trsnspose Convolution (deconvolution):

Use transposed learned filters of cnn to reconstruct the input of the layer from the
output

Unpooling

record maximum values locations during maxpooling and use the locations to
reconstruct input during deconvolution

| | Adificial Infelligence &
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DeConvNet

Layer Above
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VML

[Zeiler2014] Reconstruction of the convnet features up to the pixel space
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DeConvNet

MWW

_
m
d
=1
NS

I@l]]ﬂ

(0

]

b .
L . gg

;. Nz %
, 4 | ‘
BRI - =
LA gl -

. JHAN

A\

v

RSN
mrEEE N
.l =

e

[Zeiler2014] Visualization of intermediate layers
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DeepResolve

* Generate intermediate layer heatmaps to show how the network combines
features for classification

e Compute optimized feature map H, = argmaxyS.(H) — /1||H||§ . S. is the score
of class ¢ obtained from the last layer, A tunable hyperarameter and H € RK*W

* Global average of Feature Importance Maps (FIM) H, to obtain feature
importance vector (FIV) &, = (¢}, ... p¥) where gk = %Z}{l(H"(i))c

* This procedure is ran T times with different initial parameters to get several
estimations of Hf and &
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DeepResolve

o
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Feature Importance Map (FIM) for each channel
Channel 1 Channel 2

-
'
I

Channel K
—
&
|

(I)c . Feature Importance Vector (FIV) for class ¢

Run OFIV calculation for every class

Channel & Class 1 P . . o
&
Class 2 . ° . - ®
o : :

----------------------------------------------

.......... o i@

Class Difference Map

Class Similarity Matrix

[L'ium20"1'9] Wﬂorkin'g flow of 'D”eepRe's'oI'\'/e

VML
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DeepResolve

Feature Importance Vector Run 1-10

— Positive
Channel Index — Negative
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x . [N ] * oo Q-0 -: s X 'Y KX UT
E . N X o c 00 . P o - o0 PN Channel a: !
g . o X o ‘..'.'. ®---00 *~—o——o Channelc:-[H G
R N K o o ® v 0 o @ ® - - ® 9 -0
N N . e ® o o @ [ ] . ° * @ o @ Channel d: [ [H
3 ' . o . e @ . . o @ o . .o . . e @ + @ |
Channel f: [TE i T
® e 0o @ '] .o.o.o.- o+ 00 [ B ’
@ - eco00 . .o @ oo -
N X @ (N ] . ] [ o0° e 9 + @ Predicted top additive filters:
Variance : . - K . . . . . Channel b: [ TC
Channel e: . [' TCC
OFIV @O ¢+ o0 -0 -0 ®:--00 'Y N ) \
a b c d € £ g Channel g: -[, CT
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Ground truth logic for the target class: CAGGTC AND (GCTCAT XOR CGCTTG)
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SCOUTER

* Explain the reasons an image is classified or not to a specific class
* The cnn’s classifier (fully connected layer) is replaced with a slot attention model
* Each slot produces a confidence score for each class

* The cnn’s features F are passed through a convolutional layer and a position
embedding to model the spatial information

*. Then, a self-attention mechanism is utilized to compute the weighted sum of
features as: A®) = g(Q(W)K(F))
* ¢ sigmoid function Q, K: fully-connected networks W : slot weights

| | Artificial Intelligence &
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SCOUTER

_’ ()1(‘.!’.017)
F q()ﬁ(“l”)
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_’()10({:4931)
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[Li2020] SCOUTER overview
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SCOUTER VML

why not “7” why not “1” why not “2”

deuwiojo)

why loan why tobacco why cinema why not loan ~ why not toba.  why not cine.

-
red-face cor. why r-cor why pel. cor. why chat why notr-cor ~ why not pel. why not chat 0
Input SCOUTER ;- SCOUTER_

[L12020] Examples of positive and negative decisions
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Visual explanation of deep neural @ML
networks by interpretation

* |dentification of relevant features to the predictions of the network F

* Forward-propagation of N training images to obtain m—dimensional features
X = (X{,X; ...Xy) € RVXM

* Target labels L = (1.,1,,...1y) € RE*N

* Predict a linear combination of activations X for each class using
W = (W, Wy, ...Wy) € RE*™

by solving the optimization problem :
2
W* = argminy “XTW — LT||
F
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Visual explanation of deep neural @ML
networks by interpretation

Training time (Interpretation) Predicted class:tabb
Original Tralnmg Data Relavant Features

L
v.

DNN

---------------------------------------------------------------------------------------------------------------------------------------------------

Test time (Explanation)
Test Image

N
L DNN
TpEE

Relevant Features

[Oramas2019] Overview of training and testing pipeline
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Plot visualizations (VML

* Produce scatter plots to explain decisions or visualize the data
* Methods

« t-SNE

« Understanding deep features using PCA

« Visualization of hidden layers

« TreeView

| | Artificial Intelligence & 34
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t-distributed stochastic neighbor
embeddings (t-SNE)

A=

e * + 0 .8 ¢« O
DO~ EWN-O

[Maaten2008] Visualization of MNIST
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Visualization of hidden layers @ML

* 2D scatter-plot the projections of the hidden neurons’ activation coloured
according to the class

* Dimensionality reduction and visualization of:
« Observations
« neuron’s relationships

. Clustering of activations in groups to explain predictions
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Visualization of hidden layers VML

activation projection neuron projection

before training

after training

EEEEEEEE @ low B
0123456789 discriminative power (8 vs rest)

[Rauber2016]T-SNE projection of neurons and classes on MNIST test set
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Understanding deep features using C
PCA ML

* analyzes CNN feature responses of layers with decomposition into a linear
combination of principal components using knowledge from the input scene

* Given
e animage ry from a set Q with ® images indexed from 6 € [1, O]
. features FL(ry) of the L., layer of CNN

e Calculate centered features F:(ry) = Fr(ry) — @iZ?zl FL (1)

* 1. timage from set Q)
* Compute eigenvectors of the covariance matrix:

®
1
= > F(rp)F ()"
. 6=1
CIIC) pameia memgences. y



Understanding deep features using
PCA Yk

|""|:_ = -
i e -1, BN
(a) Lighting (b) Scale o
o HOF = EER®
Rd LI, FaFie e
O gaE R gl =
=l = B
Ed—iE H = EL&' & E a8 [ ]
e 0% & e s of "ar
CSE El_ll_l_la’?j: e ag B = ;E.El o :
S e ZEaE - 4‘5 e
B E S |
i Teafds -~
ST E Car orientation
Car Style

(c) Object color (d) Background color

[Aubry2015] PCA embeddings based on different factors

| | Artificial Intelligence &
Information Analysis Lab



TreeView

* Hierarchical decomposition of the feature subspaces
* Transformation T;: X — Y input from space: X into new space of features: Y,
* Transformation T,:Y — Z classify features Y to label space Z

* Partition space of features: Y into K subspaces with similar activations of the
hidden layers

* Each cluster i describes a specific factor S;

* A new K-dimensional vector from cluster labels is constructed and used for
visualization

| | Adificial Infelligence &
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TreeView

|

Hidden Layers
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.', N- > ;"' Classifier
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-----------------------------------------------------

Neural
Activations in
Hidden Layer
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Identify Cluster Fit Classifier to
Factors via : Samples into Predict Group
Partitioning Groups ID

_____________________________________________________

[Thiagarajan2016] TreeView method

VML

Construct
Treeview

|
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TreeView
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[Thiagarajan2016] Visualization of a correctly classified example for each
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Textual explanations (VML

* Produce natural language-text to explain the decisions of the algorithm
* Find semantic words that provide qualitative explanations

* Methods
« Cell Activation Value
« InterpNET
« Hierarchical Question and Image Co-Attention for Visual Question
Answering

« Visual Dialog
« Explain Deep Neural Networks with Semantic Information
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Cell Activation Value

Cell that turns on inside comments and quotes:
-

Cell sensitive to position in line:
;S of the Berezina lies in the fact
ed the fallacy of all the plans for
the soundness of the only possible
u 2 the general mass of the army P
to follow the enemy up. The French crowd m
g speed and all its energy was directed
like a wounded animal and it was imposs
s shown ngt so0 muc: by the arra:gene:tsbit
place at the bridges. wWhen the W
ople from Moscow and women with children
nsport, all--carried on by vis inertiae--
and into the ice-covered water and did not)

Cell that tums on inside quotes:

Cell that is sensitive to the depth of an expression:
#ifdef CONFIG_AUDITSYSCALL
Cell that robustly activates inside if statements: s.tatic inline int audit_match_class_bits(int class, u32 *mask)

DZES T AFTE)

Karpathy2015] activations of LSTM. Text color corresponds to activation value
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InterpNET @ML

8,192 blinear features

| 500 ReLU L . .
2w0sotmax  This is an image of a Red Winged Blackbird because...

Bilinear Compact Pooling ——m

“I -

[Barratt2017] Overview of Interpnet
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InterpNET

Artificial Intelligence &
Information Analysis Lab

InterpNET(0)
InterpNET(1)
InterpNET(2)
InterpNET(3)
Captioning

InterpNET(0)
InterpNET(1)
InterpNET(2)
InterpNET(3)
Captioning

InterpNET(0)
InterpNET(1)
InterpNET(2)
InterpNET(3)
Captioning

InterpNET(0)
InterpNET(1)
InterpNET(2)
InterpNET(3)
Captioning

[Barratt2017] Examples of InterpNet text generations

This is an image of a Tree Sparrow because...

this bird has a brown crown, brown primaries, and a brown belly.
this bird has wings that are brown and has a white belly.
this bird has wings that are brown and has a white belly.
this bird has a brown crown, brown primaries, and a brown belly.
this bird has a brown crown, brown primaries, and a brown belly.

This is an image of a Philadelphia Vireo because...

this bird has wings that are grey and has a yellow belly.

this bird has wings that are grey and has a yellow belly.

this bird has wings that are brown and has a yellow belly.

this bird has a vellow belly and breast with a short pointy bill.

this bird has a yellow belly and breast with a gray crown and white wingbars.

This is an image of an Ivory Gull because...

this bird has wings that are white and has a yellow bill.

this bird has wings that are black and has a white belly.

this bird has wings that are grey and has a white belly.

this bird has wings that are grey and has a white belly.

this bird has a white belly and breast with a black wing and long hooked bill.

This is an image of a Scott Oriole because...

this bird has a yellow belly and breast with a black superciliary and white wingbars.
this bird has a black crown, black primaries, and a yellow belly.

this bird has wings that are black and has a yellow belly.

this bird has a black crown, a black bill, and a black breast.

this bird has a black crown, black primaries, and a white belly.

46



Hierarchical Question-Image Attention
for Visual Question Answering

Answer: green

What color on the stop light is lit up

1

the
What
color |L olor || -- stop || jight || ...
. T light T
|\\ mn
E%
E
What || color || ... || stop || light || ...

9®

Question: What color on the
stop light is lit up ?

Artificial Intelligence &
Information Analysis Lab

co-attention

[Lu2016] Types of attention

(vmL
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Hierarchical Question-Image Attention CMI'
for Visual Question Answering

whalt is the man holding a

on top of a snow covered snowboard on top of a snow snowboard on top of a snow
) V COVETEC

what is the man holding a

Q: what is the man holding a
snowboard on top of a snow
covered? A: mountain

what is the man holding a

covered ? covered ?

what is the of the bird ? what is the color of the bird ? what is the

|L elu

[Lu2016] Example of attention
maps

Q: what is the color of the bird? A:
white

Q: how many snowboarders in W many in how many snowboarders in how many snowboarders in
formation in the snow, four is formation in the snow , four is formation in the snow , four is formation in the snow , four is
sitting? A: 5 ? sitting ? sitting ?
“ ..
rtificial Intelligence & 48
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Visual dialog

Do you think the
woman is with him?

Question Q,

The man is riding his bicycle on the
sidewalk. |s the man wearing a
helmet? No he does not have

a helmet on. ... Are there any people
nearby? Yes there's a woman walking
behind him

t rounds of history
(concatenated)

[Das2018] Visual dialog system to predict the answer

| | Artificial Intelligence &
Information Analysis Lab

Decoder

LSTM

LSTM

VML

No | don't think
they are together

Answer A,

49



Visual dialog

| | Artificial Intelligence &
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Visual Dialog

&)

White and red

O
(o)

No, something is there can't tell what it is

Yes, they are

[Das2018] Dialog of Al and human

VML
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Semantic explanation of Deep Neural VML
Networks

|
! I
l -
Learning Process Qe |
I T
: Resuits Human users '_g |
|
I o |
: > Action Recognition |- :
I - Why is this output? I
| Output —- Riding . i
| > at ‘ What are hidden features? :
! Description Generation When does it fail? !
: > A man is riding How to correct errors? |
! I
! I
! I
: l Opaque System i
Descriptions
—
. 5 I
| Dat i
| ata Interpretable Learnin ) '
! 1. A guy rdes the bic- P @ o Results Human users h ' :
ycla across the stree |
! semm 2. A man is riding a bi- S I
: M ke rapidly on the road . > O S ’ Action Recognition + ) :
I "3, A man rides a bike [Interpre @ Visuali- Riding Inter- I know how it works. |
| . y :
i Topics tation ':ﬁ“ oi“g“ zation action || \,nderstand hidden features.| |
I * . * . - . *
: man, guy, young Description Generation | know what's going wrong. | |
. . L. . |
! “_’gd’ S.g.ee“ c.’c';"'e - O - A man is riding a bike | can correct errors. !
|  ride, riding, rider across the road |
| bike, bicycle, motorcycle . :
| |
! I

51
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Semantic explanation of Deep Neural VML
Networks

“an airplane is flying in a wide circular pattern”

“a plane is flying in the air”
*a plane is making some acrobatics”

i

b

o
L]

L §

-~
£

2
~
PR B
el

[Dong2017] Video captioning encoder’s training process along with human
OHO descriptions decoder

Information Analysis Lab 32



Numerical Explanations

* Provide numerical outputs to interpet models

* Train classifiers that explain the model
« Concept Activation Vectors
« Linear classifier probes
 LIME

| | Artificial Intelligence &
Information Analysis Lab
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Concept Activation Vectors (CAV) @ML

@ @ Ji; R;n: R™ hir:R™ =R
I 2= |
Yoo H0]

N,
N iy N ¥

~ H K" class

©,

SC,k,l(%{*(’((‘% )

=Vh i (fi(")) - vh

[Kim2018] Overview of CAVs learning process
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Linear classifier probes @ML

1
- - minibatches | | | main head

0.0 probe training error 1.0 308230

auxiliary head

[Alain2016] Prediction error of each layer using probe
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LIME (Local Interpretable Model- @ML
agnostic Explanations)

[Ribeiro2016] The data represented with the red cross
OHD IS explained locally using the dashed line.



Applications @ML

of explainable methods in important tasks
* Autonomous Driving

« Advisable Learning for Self-driving Vehicles by Internalizing Observation-to-Action
Rules

« Explaining Autonomous Driving by Learning End-to-End Visual Attention

* Maedical Applications
« COVID detection
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Explainable Object-induced Action @ML
Decision for Autonomous Vehicles

* Explainable autonomous driving architecture

* Global module to generate scene context

* Local module to predict actions and explanations

* Concatenation of the two modules to improve decision accuracy

* Predict next action such as ( stop, turn left, go forward) and the explanations
e.g. Stop, the traffic light is red , an obstacle is in front stop the car)
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Explainable Object-induced Action VML
Decision for Autonomous Vehicles

@ Channel-wise concatenation

Global Branch | global feature
FI Local hi ® Element-wise multiplication
L5 depor | |
4 Duplicate
e :E"E'::::::::::::::::::: """"" 3 N scores : prediction
vt . b femmceemmeeeeeeeesanes fe Actions
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Image feature :
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[Yu2020] Overview of the proposed explainable self-driving method
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Explainable Object-induced Action
Decision for Autonomous Vehicles

Dashcam Image

Global Environment Awareness
& Salient Object Ranking

' ! }

Multiple-Action With Explanation

Action Inducing Objects

Sugges‘uon L, S
; Traffic light

is red

ﬁ@ﬁ I Obstacle:

Traffic pedestrian
light Pedestrzans

[Yu2020] Examples of action and explanations of the system
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Advisable Learning for Self-driving
Vehicles by Internalizing Observation- @ML
to-Action Rules

* Explainable self-driving system
* Human advice integrated on the architecture
* Visual (attention maps) and textual explanations (sentences)

* Main modules
1. Object segmentation encoder
2. Vehicle controller
3. Observation generator
4. Action generator
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Advisable Learning for Self-driving
Vehicles by Internalizing Observation-
to-Action Rules

‘Semantic Segmentation Instance Mask Attention Heat Map
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Explainable Pulmonary Disease and @ML
COVID-19 Detection from X-rays

* Deep convolutional network VGG-16 is used to distinguish between healthy
lungs, pneumonia or covid-19

* Grad-CAM provides interpets decisions by visualizing feature maps
* Localize areas responsible for the detection of pneumonia or covid-19
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Explainable Pulmonary Disease and @ML
COVID-19 Detection from X-rays

224 x 224 x 3

224 x 224 x 64
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UIIU Artificial Infeligence & [Brunese2020] CNN architecture y
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Explainable Pulmonary Disease and @ML
COVID-19 Detection from X-rays

[Brunese2020] Response maps of input chest x-ray
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Explainable Al frameworks @ML

with implemented explainable methods can be used for interpetation
* iNNvestigate Neural Networks
* EXxplAlner

* InterpretML
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iINNvestigate Neural Networks VML

import innvestigate

model = create_a_keras_model ()
analyzer = innvestigate.create_analyzer (‘‘analyzer_ name’’, model)
analyzer. fit (X_train) # if needed
analysis = analyzer.analyze(X_test)
s
© - get 0ot
3 \o© e o Jou
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network: vggl6é & » e\ ¢ A » & i ™ P P s logit: 17.28
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network: inception_v3 .« L logit: 8.61

pred: baseball & 2 prob: 0.59
_— .
network: resnet50 logit: 10.05
pred: baseball ¥ prob: 0.44

network: nasnet large . - ) a i @ a logit: 9.86
pred: baseball . 1 [ prob: 0.94
13 BN
s,
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[Alber2019] Usage Example of INNvestigate Neural Networks
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ExplAlner VML

Model Quality Monitoring Search Space Exploration Data Shift Scoring Comparative Analytics
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[Spinner2019] General approach of explAlner
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InterpretML

Expain any 250N form for
existing model extensibility
LIME -
SHAP .datal
Sensitivity Analysis Blackbox |- _| explain_globalt) Data
Partial Dependence :exp\amilocal()
: .exp\a!n:perf(]
mplements Explainer SPkin die0 Explanation
|
Explainable Boosting : ;
'E':;iias'l;fffg: Glassbox | — Handl?st.all Stores andl visualizel Visualization
Rule List computaton exposes results
Train a model Interactive plots
designed for for end users
interpretability
Glassbox Blackbox
1 from interpret import show 1 from interpret import show
2 from interpret.glassbox import LogisticRegression 2 from interpret.blackbox import PartialDependence
3 3 from sklearn.neural_network import MLPClassifier
4 4
5  ¢lf = LogisticRegression() 5  blackbox = MLPClassifier()
6 clf. fit(x, vy) 6 blackbox.fit(X, y)
7 7
8  global exp = clf.explain_global() 8  pdp = PartialDependence(blackbox.predict_proba, X)
9 local exp = clf.explain_local(X, y) 9 global_exp = pdp.explain_global()
10 10
11 show([global_exp, local_exp]) 11 show(global_exp)

[Nori2019] Example of InterpetML usage
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