

Explainable Al summary

I. Papastratis, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 1.0.1

2

- Explainable AI
 - Introduction to Explainable Artificial Intelligence
 - Interpretability
 - Types of Interpretability
 - Visual explanations
 - Image-based
 - Plot visualizations
 - **Textual explanations**
 - Numerical-Mathematical explanations
 - Applications
 - Frameworks

nformation Analysis Lab

Machine and Deep Learning have surpassed humans in many tasks (image and speech recognition, recommendation systems, medical diagnosis) Drawbacks:

• Machine learning (ML) architectures are usually considered as blackbox models

- Deep learning (DL) have achieved outstanding performance but they don't justify their reliability
- Failure
 - An error in any moment of a self-driving car can lead to a fatal crash.
 - in the medical area, human lives may be dependent on these decisions

Issues

- responsibility for bad AI decisions
- explain errors of AI decisions
- improvenment of AI models

Solution: Explainable AI models easily understandable by humans

Artificial Intelligence & Information Analysis Lab

Interpretability

How easily we can understand the cause of an algorithm's decision or action The categorization of Interpretability methods is based on how interpretable information is provided.

Categories:

- Visual Interpretability ("obviously" interpretable information, easily perceived from human eye
- Textual Explanations (Given in form of text)
- Mathematical-Numerical Explanations

Types of Interpretability Methods

Information Analysis Lab

[Vilone2020] Categorization of explainability methods

Visual Explanations

- Visual explainable methods produce pictures or maps in order to provide information about the model's decision
 - Most common: **Saliency** methods explain results of model by producing outputs to show which components are responsible.
 - These values take the form of output probabilities or images like heatmaps.
- Plot visualization methods produce scatter plots to explain decisions or visualize the data

Visual Explanations

- Methods
- CAM (Class Activation Maps)
- Grad-CAM: Gradient based CAM
- LRP (Layer-wise Relevance Propagation)
- Peak Response Map (PRM)
- CLass-Enhanced Attentive Response (CLEAR)
- DeConvNet
- DeepResolve
- SCOUTER

Class Activation Maps (CAM)

- Generate activation maps for a decision
- Global average pooling layer is after convolutional layers
- The output features of the convolutional neural network are passed through a fully-connected layer that makes the prediction
- CAM indicates the region on the image that correspond to the prediction result

Class Activation Maps(CAM)

[Zhou2016] Overview of CAM

Class Activation Maps(CAM)

[Zhou2016] Examples of CAM

Grad-CAM: Gradient-based CAM

Gradient-weighted Class Activation Maps(Grad-CAM)

- an extended version of CAM by computing the gradients with respect to the target that flow to the final convolutional layer
- produces a map, which highlights the most useful pixels for classification

Processing steps

- Forward pass of the input image to produce the prediction
- Gradients of the target class
- The gradients of the target are back-propagated to last convolutional layer
- · Find the important locations of the image

Grad-CAM: Gradient-based CAM

[Selvaraju2017] Overview of Grad-CAM

Grad-CAM: Gradient-based CAM

[Selvaraju2017] Examples of Grad-CAM

Artificial Intelligence & Information Analysis Lab

Layer-wise Relevance Propagation (LRP)

- Decomposition of the classification decision of a DNN model in using the input
- The classification layer is decomposed into several layers
- Backward pass to produce the pixel-wise conributions to the final output from last to first layers
- We denote as w(i, j) the weight between of the connection from neuron i to neuron j

Layer-wise Relevance Propagation (LRP)

[Samek2016] LRP calculation for the input image

Peak Response Map (PRM)

[Zhou2016] Overview of PRM

Peak Response Map (PRM)

Image

Peak Response Map

Sheep

[Zhou2016] Examples of PRM

CLass-Enhanced Attentive Response (CLEAR)

- Visualizes the decisions of image classification applications with attention maps produced by back-propagating the activations of the last layer
 - After forward pass using deconvolutions we obtain the deconvolved output $\mathbf{h}(l) = \sum_{k=1}^{K} z(k, l) * w(k, l)$
 - k: kernel index z(l): feature maps of layer l, w(l): kernel weights, K kernels
- Final response of layer *l* is the product: $\mathbf{R}(l) = \mathbf{h}(1)\mathbf{h}(2) \dots \mathbf{h}(l)$
- Compute individual attention maps R(x', c) of class c and back-projected input x' from all L layers of the deconvolutional network as :

 $\mathbf{R}(\mathbf{x}',c) = \mathbf{h}(1)\mathbf{h}(2) \dots \mathbf{h}(L)$

CLass-Enhanced Attentive Response (CLEAR) Last layer C O N 2 C O N Categorical output U O Z > C O N Global avg pooling $R(\underline{x}|c)$ Deconvolution Dominant Class Attentive Map **CLass Enhanced** Attentive Response $F(\hat{C}(\underline{x}))$ (CLEAR) Map +Individual Response Dominant Response maps Мар $R(\underline{x}|c)$ $D_{\hat{c}}(\underline{x})$ 9 0 3 8 Color map F(.Artificial Intelligence & [Kumar2017] CLEAR method

Information Analysis Lab

22

DeConvNet

- A deconvnet is actually a convnet model with the same convolutional layers but in reverse since it maps pixels to features
- · Deconvet is used here to generate the input images from features
- Following operations are adopted:
- Trsnspose Convolution (deconvolution):
 - Use transposed learned filters of cnn to reconstruct the input of the layer from the output
- · Unpooling
 - record maximum values locations during maxpooling and use the locations to reconstruct input during deconvolution

VML

[Zeiler2014] Reconstruction of the convnet features up to the pixel space

DeConvNet

Layer 1 u 0 0 0 0 0 Layer 2

[Zeiler2014] Visualization of intermediate layers

DeepResolve

- Generate intermediate layer heatmaps to show how the network combines features for classification
- Compute optimized feature map $\mathbf{H}_{c} = argmax_{\mathbf{H}}S_{c}(\mathbf{H}) \lambda ||\mathbf{H}||_{2}^{2}$, S_{c} is the score of class c obtained from the last layer, λ tunable hyperarameter and $\mathbf{H} \in \mathbf{R}^{K \times W}$
- Global average of Feature Importance Maps (FIM) $\mathbf{H}_{\mathbf{c}}$ to obtain feature importance vector (FIV) $\mathbf{\Phi}_{\mathbf{c}} = (\varphi_c^1, \dots, \varphi_c^k)$ where $\varphi_c^k = \frac{1}{W} \sum_{i=1}^W (H^k(i))_c$
- This procedure is ran T times with different initial parameters to get several estimations of H_c^t and Φ_c^t

DeepResolve

DeepResolve

Artificial Intelligence & Information Analysis Lab

- Explain the reasons an image is classified or not to a specific class
- The cnn's classifier (fully connected layer) is replaced with a slot attention model
- Each slot produces a confidence score for each class
- The cnn's features F are passed through a convolutional layer and a position embedding to model the spatial information
 - Then, a self-attention mechanism is utilized to compute the weighted sum of features as: $\mathbf{A}^{(t)} = \sigma(Q(\mathbf{W}^{(t)})K(\mathbf{F}))$
- σ : sigmoid function Q, K: fully-connected networks $\mathbf{W}^{(t)}$: slot weights

SCOUTER

[Li2020] SCOUTER overview

SCOUTER

Input

loan

why loan

why tobacco

why chat

why not "1"

SCOUTER_

why not r-cor

why not pel.

why not chat

31

why "2"

why cinema

why not loan

why not "7"

Visual explanation of deep neural networks by interpretation

- Identification of relevant features to the predictions of the network F
- Forward-propagation of N training images to obtain m-dimensional features

$$\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2 \dots \mathbf{x}_N) \in \mathbb{R}^{N \times m}$$

- Target labels $\mathbf{L} = (\mathbf{l}_1, \mathbf{l}_2, \dots \mathbf{l}_N) \in \mathbb{R}^{C \times N}$
- Predict a linear combination of activations X for each class using

$$\mathbf{W} = (\mathbf{w}_1, \mathbf{w}_2, \dots \mathbf{w}_N) \in \mathbb{R}^{C \times m}$$

by solving the optimization problem :

$$\mathbf{W}^* = argmin_{\mathbf{W}} \left| \left| \mathbf{X}^{\mathsf{T}} \mathbf{W} - \mathbf{L}^{\mathsf{T}} \right| \right|_{F}^{2}$$

Visual explanation of deep neural networks by interpretation

[Oramas2019] Overview of training and testing pipeline

Artificial Intelligence & Information Analysis Lab

Plot visualizations

- Produce scatter plots to explain decisions or visualize the data
- Methods
 - t-SNE
 - Understanding deep features using PCA
 - Visualization of hidden layers
 - TreeView

t-distributed stochastic neighbor embeddings (t-SNE)

[Maaten2008] Visualization of MNIST

Visualization of hidden layers

- 2D scatter-plot the projections of the hidden neurons' activation coloured according to the class
- Dimensionality reduction and visualization of:
 - observations
 - neuron's relationships
 - Clustering of activations in groups to explain predictions

Visualization of hidden layers

[Rauber2016]T-SNE projection of neurons and classes on MNIST test set

Understanding deep features using PCA

• analyzes CNN feature responses of layers with decomposition into a linear combination of principal components using knowledge from the input scene

 $\frac{1}{\Theta} \sum \mathbf{F}^{L}(r_{\theta}) \mathbf{F}^{L}(r_{\theta})^{\mathbf{T}}$

- Given
 - an image r_{θ} from a set Ω with Θ images indexed from $\theta \in [1, \Theta]$
 - features $\hat{\mathbf{F}}^L(r_{\theta})$ of the L_{th} layer of CNN
 - Calculate centered features $\mathbf{F}^{L}(r_{\theta}) = \hat{\mathbf{F}}^{L}(r_{\theta}) \frac{1}{\Theta} \sum_{t=1}^{\Theta} \hat{\mathbf{F}}^{L}(r_{t})$
- r_t : t image from set Ω
- Compute eigenvectors of the covariance matrix:

Understanding deep features using PCA

[Aubry2015] PCA embeddings based on different factors

Artificial Intelligence & Information Analysis Lab

TreeView

- Hierarchical decomposition of the feature subspaces
- Transformation $T_1: \mathbf{X} \to \mathbf{Y}$ input from space: **X** into new space of features: **Y**,
- Transformation $T_2: \mathbf{Y} \to \mathbf{Z}$ classify features \mathbf{Y} to label space \mathbf{Z}
- Partition space of features: Y into K subspaces with similar activations of the hidden layers
- Each cluster *i* describes a specific factor *S_i*
- A new *K*-dimensional vector from cluster labels is constructed and used for visualization

TreeView

Information Analysis Lab

TreeView

[Thiagarajan2016] Visualization of a correctly classified example for each

factor

Textual explanations

- Produce natural language-text to explain the decisions of the algorithm
- Find semantic words that provide qualitative explanations
- Methods
 - Cell Activation Value
 - InterpNET
 - Hierarchical Question and Image Co-Attention for Visual Question Answering
 - Visual Dialog
 - Explain Deep Neural Networks with Semantic Information

Cell Activation Value

[Karpathy2015] activations of LSTM. Text color corresponds to activation value

Artificial Intelligence & Information Analysis Lab

44

[Barratt2017] Overview of Interpnet

InterpNET

InterpNET

This is an image of a Tree Sparrow because ...

InterpNET(0)	this bird has a brown crown, brown primaries, and a brown belly.
InterpNET(1)	this bird has wings that are brown and has a white belly.
InterpNET(2)	this bird has wings that are brown and has a white belly.
InterpNET(3)	this bird has a brown crown, brown primaries, and a brown belly.
Captioning	this bird has a brown crown, brown primaries, and a brown belly.

This is an image of a Philadelphia Vireo because ...

InterpNET(0)	this bird has wings that are grey and has a yellow belly.
InterpNET(1)	this bird has wings that are grey and has a yellow belly.
InterpNET(2)	this bird has wings that are brown and has a yellow belly.
InterpNET(3)	this bird has a yellow belly and breast with a short pointy bill.
Captioning	this bird has a yellow belly and breast with a gray crown and white wingbars

This is an image of an Ivory Gull because ...

InterpNET(0)	this bird has wings that are white and has a yellow bill.
InterpNET(1)	this bird has wings that are black and has a white belly.
InterpNET(2)	this bird has wings that are grey and has a white belly.
InterpNET(3)	this bird has wings that are grey and has a white belly.
Captioning	this bird has a white belly and breast with a black wing and long hooked bill.

This is an image of a Scott Oriole because ...

this bird has a yellow belly and breast with a black superciliary and white wingbars. this bird has a black crown, black primaries, and a yellow belly. this bird has wings that are black and has a yellow belly. InterpNET(0) InterpNET(1) InterpNET(2) this bird has a black crown, a black bill, and a black breast. InterpNET(3) this bird has a black crown, black primaries, and a white belly. Captioning

Artificial Intelligence & Information Analysis Lab

[Barratt2017] Examples of InterpNet text generations

Hierarchical Question-Image Attention for Visual Question Answering

Artificial Intelligence & Information Analysis Lab

Hierarchical Question-Image Attention for Visual Question Answering

how many snowboarders in formation in the snow, four is sitting ?

[Lu2016] Example of attention maps

how many snowboarders in

formation in the snow, four is

Q: how many snowboarders in

formation in the snow, four is

t rounds of history (concatenated)

[Das2018] Visual dialog system to predict the answer

Artificial Intelligence & **Information Analysis Lab**

Question Q, The man is riding his bicycle on the

sidewalk. Is the man wearing a helmet? No he does not have a helmet on. ... Are there any people nearby? Yes there's a woman walking behind him.

Image I

Visual dialog

Visual dialog

Artificial Intelligence & Information Analysis Lab

[Das2018] Dialog of AI and human

(VML

Semantic explanation of Deep Neural Networks

Artificial Intelligence & Information Analysis Lab

[Dong2017] Overview of the method

VML

Semantic explanation of Deep Neural Networks

[Dong2017] Video captioning encoder's training process along with human Artificial Intelligence & descriptions decoder

Numerical Explanations

- Provide numerical outputs to interpet models
- Train classifiers that explain the model
 - Concept Activation Vectors
 - Linear classifier probes
 - LIME

Concept Activation Vectors (CAV)

[Kim2018] Overview of CAVs learning process

[Alain2016] Prediction error of each layer using probe

LIME (Local Interpretable Modelagnostic Explanations)

[Ribeiro2016] The data represented with the red cross is explained locally using the dashed line.

Artificial Intelligence & Information Analysis Lab

Applications

of explainable methods in important tasks

- Autonomous Driving
 - Advisable Learning for Self-driving Vehicles by Internalizing Observation-to-Action Rules
 - Explaining Autonomous Driving by Learning End-to-End Visual Attention
- Medical Applications
 - COVID detection

Explainable Object-induced Action Decision for Autonomous Vehicles

- Explainable autonomous driving architecture
- Global module to generate scene context
- Local module to predict actions and explanations
- Concatenation of the two modules to improve decision accuracy
- Predict next action such as (stop, turn left, go forward) and the explanations e.g. Stop, the traffic light is red, an obstacle is in front stop the car)

Explainable Object-induced Action Decision for Autonomous Vehicles

[Yu2020] Overview of the proposed explainable self-driving method

Explainable Object-induced Action Decision for Autonomous Vehicles

Information Analysis Lab

[Yu2020] Examples of action and explanations of the system

Advisable Learning for Self-driving Vehicles by Internalizing Observationto-Action Rules

- Explainable self-driving system
- Human advice integrated on the architecture
- Visual (attention maps) and textual explanations (sentences)
- Main modules
 - 1. Object segmentation encoder
 - 2. Vehicle controller
 - 3. Observation generator
 - 4. Action generator

Advisable Learning for Self-driving Vehicles by Internalizing Observationto-Action Rules

Artificial Intelligence & Information Analysis Lab

[Kim2020] Workflow of the self-driving system

Explainable Pulmonary Disease and COVID-19 Detection from X-rays

- Deep convolutional network VGG-16 is used to distinguish between healthy lungs, pneumonia or covid-19
- Grad-CAM provides interpets decisions by visualizing feature maps
- Localize areas responsible for the detection of pneumonia or covid-19

Explainable Pulmonary Disease and COVID-19 Detection from X-rays

Information Analysis Lab

Explainable Pulmonary Disease and COVID-19 Detection from X-rays

[Brunese2020] Response maps of input chest x-ray

Explainable AI frameworks

with implemented explainable methods can be used for interpetation

- iNNvestigate Neural Networks
- ExplAIner
- InterpretML

iNNvestigate Neural Networks

import innvestigate
model = create_a_keras_model()
analyzer = innvestigate.create_analyzer('`analyzer_name'`, model)
analyzer.fit(X_train) # if needed
analysis = analyzer.analyze(X_test)

[Alber2019] Usage Example of iNNvestigate Neural Networks

Artificial Intelligence & Information Analysis Lab

ExplAIner

[Spinner2019] General approach of explAlner

Artificial Intelligence & Information Analysis Lab

68

InterpretML

[Nori2019] Example of InterpetML usage

Artificial Intelligence & Information Analysis Lab

69

References

[Vilone2020] Vilone, Giulia, and Luca Longo. "Explainable Artificial Intelligence: a Systematic Review." *arXiv preprint arXiv:2006.00093* (2020).

[Tjoa2020] Tjoa, Erico, and Cuntai Guan. "A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI." *IEEE Transactions on Neural Networks and Learning Systems* (2020).

[Adadi2018] Adadi, Amina, and Mohammed Berrada. "Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI)." *IEEE Access* 6 (2018): 52138-52160.

[**Zhou2016**] Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. "Learning deep features for discriminative localization." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2921-2929. 2016.

[Selvaraju2017] Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. "Grad-cam: Visual explanations from deep networks via gradient-based localization." In *Proceedings of the IEEE international conference on computer vision*, pp. 618-626. 2017.

[Samek2016] Samek, Wojciech, Grégoire Montavon, Alexander Binder, Sebastian Lapuschkin, and Klaus-Robert Müller. "Interpreting the predictions of complex mI models by layer-wise relevance propagation." *arXiv preprint arXiv:1611.08191* (2016).

[Ribeiro2016] Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should I trust you?" Explaining the predictions of any classifier." In *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 1135-1144. 2016.

Artificial Intelligence & Information Analysis Lab

References

[Zhou2016] Zhou, Yanzhao, Yi Zhu, Qixiang Ye, Qiang Qiu, and Jianbin Jiao. "Weakly supervised instance segmentation using class peak response." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 3791-3800. 2018.

[Zeiler2014] Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." In *European conference on computer vision*, pp. 818-833. Springer, Cham, 2014.

[Dosovitskiy2015] Dosovitskiy, Alexey, and Thomas Brox. "Inverting convolutional networks with convolutional networks." *arXiv preprint arXiv:1506.02753* 4 (2015).

[Kumar2017] Kumar, Devinder, Alexander Wong, and Graham W. Taylor. "Explaining the unexplained: A class-enhanced attentive response (clear) approach to understanding deep neural networks." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops*, pp. 36-44. 2017.

[Liu2019] Liu G, Zeng H, Gifford DK. Visualizing complex feature interactions and feature sharing in genomic deep neural networks. BMC bioinformatics. 2019 Dec;20(1):1-4.

[Aubry2015] Aubry, Mathieu, and Bryan C. Russell. "Understanding deep features with computer-generated imagery." In Proceedings of the IEEE International Conference on Computer Vision, pp. 2875-2883. 2015.

[Rauber2016] Rauber, Paulo E., Samuel G. Fadel, Alexandre X. Falcao, and Alexandru C. Telea. "Visualizing the hidden activity of artificial neural networks." *IEEE transactions on visualization and computer graphics* 23, no. 1 (2016): 101-110.

References

[Thiagarajan2016] Thiagarajan, Jayaraman J., Bhavya Kailkhura, Prasanna Sattigeri, and Karthikeyan Natesan Ramamurthy. "Treeview: Peeking into deep neural networks via feature-space partitioning." *arXiv preprint arXiv:1611.07429* (2016).

[Maaten2008] Maaten, Laurens van der, and Geoffrey Hinton. "Visualizing data using t-SNE." Journal of machine learning research 9, no. Nov (2008): 2579-2605.

[Karpathy2015] Karpathy, Andrej, Justin Johnson, and Li Fei-Fei. "Visualizing and understanding recurrent networks." *arXiv* preprint arXiv:1506.02078 (2015).

[Barratt2017] Barratt, Shane. "Interpnet: Neural introspection for interpretable deep learning." *arXiv preprint arXiv:1710.09511* (2017).

[Lu2016] Lu, Jiasen, Jianwei Yang, Dhruv Batra, and Devi Parikh. "Hierarchical question-image co-attention for visual question answering." In Advances in neural information processing systems, pp. 289-297. 2016.

[**Dong2017**] Dong, Yinpeng, Hang Su, Jun Zhu, and Bo Zhang. "Improving interpretability of deep neural networks with semantic information." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 4306-4314. 2017

[Das2018] Das, A., S. Kottur, K. Gupta, A. Singh, D. Yadav, S. Lee, J. Moura, D. Parikh, and D. Batra. "Visual Dialog." IEEE transactions on pattern analysis and machine intelligence (2018).

References

[Kim2018] Kim, Been, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, and Fernanda Viegas. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." In *International conference on machine learning*, pp. 2668-2677. PMLR, 2018.

[Alain2016] Alain, Guillaume, and Yoshua Bengio. "Understanding intermediate layers using linear classifier probes." *arXiv* preprint arXiv:1610.01644 (2016).

[Li2020] Li, Liangzhi, Bowen Wang, Manisha Verma, Yuta Nakashima, Ryo Kawasaki, and Hajime Nagahara. "SCOUTER: Slot attention-based classifier for explainable image recognition." arXiv preprint arXiv:2009.06138 (2020).

[Oramas2019] Oramas Mogrovejo, J. A., Wang, K., & Tuytelaars, T. (2019). Visual explanation by interpretation: Improving visual feedback capabilities of deep neural networks. In https://iclr. cc/Conferences/2019/AcceptedPapersInitial. openReview.

[Kim2020] Kim, Jinkyu, Suhong Moon, Anna Rohrbach, Trevor Darrell, and John Canny. "Advisable Learning for Self-Driving Vehicles by Internalizing Observation-to-Action Rules." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9661-9670. 2020.

[Yu2020] Xu, Yiran, Xiaoyin Yang, Lihang Gong, Hsuan-Chu Lin, Tz-Ying Wu, Yunsheng Li, and Nuno Vasconcelos. "Explainable Object-induced Action Decision for Autonomous Vehicles." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9523-9532. 2020.

References

[Brunese2020] Brunese, Luca, Francesco Mercaldo, Alfonso Reginelli, and Antonella Santone. "Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays." Computer Methods and Programs in Biomedicine 196 (2020): 105608.

[Alber2019] Alber, Maximilian, Sebastian Lapuschkin, Philipp Seegerer, Miriam Hägele, Kristof T. Schütt, Grégoire Montavon, Wojciech Samek, Klaus-Robert Müller, Sven Dähne, and Pieter-Jan Kindermans. "iNNvestigate neural networks!." J. Mach. Learn. Res. 20, no. 93 (2019): 1-8.

[Spinner2019] Spinner, Thilo, Udo Schlegel, Hanna Schäfer, and Mennatallah El-Assady. "explAIner: A visual analytics framework for interactive and explainable machine learning." IEEE transactions on visualization and computer graphics 26, no. 1 (2019): 1064-1074.

[Nori2019] Nori, Harsha, Samuel Jenkins, Paul Koch, and Rich Caruana. "InterpretML: A Unified Framework for Machine Learning Interpretability." arXiv preprint arXiv:1909.09223 (2019).

[Vilone2020] Vilone, Giulia, and Luca Longo. "Explainable Artificial Intelligence: a Systematic Review." *arXiv preprint arXiv:2006.00093* (2020).

[Tjoa2020] Tjoa, Erico, and Cuntai Guan. "A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI." *IEEE Transactions on Neural Networks and Learning Systems* (2020).

[Adadi2018] Adadi, Amina, and Mohammed Berrada. "Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI)." *IEEE Access* 6 (2018): 52138-52160.

[Zhou2016] Zhou, Bolei, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. "Learning deep features for discriminative localization." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2921-2929. 2016.

[Selvaraju2017] Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. "Grad-cam: Visual explanations from deep networks via gradient-based localization." In *Proceedings of the IEEE international conference on computer vision*, pp. 618-626. 2017.

[Samek2016] Samek, Wojciech, Grégoire Montavon, Alexander Binder, Sebastian Lapuschkin, and Klaus-Robert Müller. "Interpreting the predictions of complex ml models by layer-wise relevance propagation." *arXiv preprint arXiv:1611.08191* (2016).

[Ribeiro2016] Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should I trust you?" Explaining the predictions of any classifier." In *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 1135-1144. 2016.

Artificial Intelligence & Information Analysis Lab

[Zhou2016] Zhou, Yanzhao, Yi Zhu, Qixiang Ye, Qiang Qiu, and Jianbin Jiao. "Weakly supervised instance segmentation using class peak response." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 3791-3800. 2018.

[Zeiler2014] Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." In *European conference on computer vision*, pp. 818-833. Springer, Cham, 2014.

[Dosovitskiy2015] Dosovitskiy, Alexey, and Thomas Brox. "Inverting convolutional networks with convolutional networks." *arXiv preprint arXiv:1506.02753* 4 (2015).

[Kumar2017] Kumar, Devinder, Alexander Wong, and Graham W. Taylor. "Explaining the unexplained: A class-enhanced attentive response (clear) approach to understanding deep neural networks." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops*, pp. 36-44. 2017.

[Liu2019] Liu G, Zeng H, Gifford DK. Visualizing complex feature interactions and feature sharing in genomic deep neural networks. BMC bioinformatics. 2019 Dec;20(1):1-4.

[Aubry2015] Aubry, Mathieu, and Bryan C. Russell. "Understanding deep features with computer-generated imagery." In Proceedings of the IEEE International Conference on Computer Vision, pp. 2875-2883. 2015.

[Rauber2016] Rauber, Paulo E., Samuel G. Fadel, Alexandre X. Falcao, and Alexandru C. Telea. "Visualizing the hidden activity of artificial neural networks." *IEEE transactions on visualization and computer graphics* 23, no. 1 (2016): 101-110.

[Thiagarajan2016] Thiagarajan, Jayaraman J., Bhavya Kailkhura, Prasanna Sattigeri, and Karthikeyan Natesan Ramamurthy. "Treeview: Peeking into deep neural networks via feature-space partitioning." *arXiv preprint arXiv:1611.07429* (2016).

[Maaten2008] Maaten, Laurens van der, and Geoffrey Hinton. "Visualizing data using t-SNE." Journal of machine learning research 9, no. Nov (2008): 2579-2605.

[Karpathy2015] Karpathy, Andrej, Justin Johnson, and Li Fei-Fei. "Visualizing and understanding recurrent networks." *arXiv* preprint arXiv:1506.02078 (2015).

[Barratt2017] Barratt, Shane. "Interpnet: Neural introspection for interpretable deep learning." *arXiv preprint arXiv:1710.09511* (2017).

[Lu2016] Lu, Jiasen, Jianwei Yang, Dhruv Batra, and Devi Parikh. "Hierarchical question-image co-attention for visual question answering." In Advances in neural information processing systems, pp. 289-297. 2016.

[**Dong2017**] Dong, Yinpeng, Hang Su, Jun Zhu, and Bo Zhang. "Improving interpretability of deep neural networks with semantic information." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 4306-4314. 2017

[Das2018] Das, A., S. Kottur, K. Gupta, A. Singh, D. Yadav, S. Lee, J. Moura, D. Parikh, and D. Batra. "Visual Dialog." IEEE transactions on pattern analysis and machine intelligence (2018).

[Kim2018] Kim, Been, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, and Fernanda Viegas. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." In *International conference on machine learning*, pp. 2668-2677. PMLR, 2018.

[Alain2016] Alain, Guillaume, and Yoshua Bengio. "Understanding intermediate layers using linear classifier probes." *arXiv* preprint arXiv:1610.01644 (2016).

[Li2020] Li, Liangzhi, Bowen Wang, Manisha Verma, Yuta Nakashima, Ryo Kawasaki, and Hajime Nagahara. "SCOUTER: Slot attention-based classifier for explainable image recognition." arXiv preprint arXiv:2009.06138 (2020).

[Oramas2019] Oramas Mogrovejo, J. A., Wang, K., & Tuytelaars, T. (2019). Visual explanation by interpretation: Improving visual feedback capabilities of deep neural networks. In https://iclr. cc/Conferences/2019/AcceptedPapersInitial. openReview.

[Kim2020] Kim, Jinkyu, Suhong Moon, Anna Rohrbach, Trevor Darrell, and John Canny. "Advisable Learning for Self-Driving Vehicles by Internalizing Observation-to-Action Rules." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9661-9670. 2020.

[Yu2020] Xu, Yiran, Xiaoyin Yang, Lihang Gong, Hsuan-Chu Lin, Tz-Ying Wu, Yunsheng Li, and Nuno Vasconcelos. "Explainable Object-induced Action Decision for Autonomous Vehicles." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9523-9532. 2020.

[Brunese2020] Brunese, Luca, Francesco Mercaldo, Alfonso Reginelli, and Antonella Santone. "Explainable deep learning for pulmonary disease and coronavirus COVID-19 detection from X-rays." Computer Methods and Programs in Biomedicine 196 (2020): 105608.

[Alber2019] Alber, Maximilian, Sebastian Lapuschkin, Philipp Seegerer, Miriam Hägele, Kristof T. Schütt, Grégoire Montavon, Wojciech Samek, Klaus-Robert Müller, Sven Dähne, and Pieter-Jan Kindermans. "iNNvestigate neural networks!." J. Mach. Learn. Res. 20, no. 93 (2019): 1-8.

[Spinner2019] Spinner, Thilo, Udo Schlegel, Hanna Schäfer, and Mennatallah El-Assady. "explAIner: A visual analytics framework for interactive and explainable machine learning." IEEE transactions on visualization and computer graphics 26, no. 1 (2019): 1064-1074.

[Nori2019] Nori, Harsha, Samuel Jenkins, Paul Koch, and Rich Caruana. "InterpretML: A Unified Framework for Machine Learning Interpretability." arXiv preprint arXiv:1909.09223 (2019).

[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.

[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).

[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.
[NIK2000] N. Nikolaidis and I. Pitas, 3D Image Processing Algorithms, J. Wiley, 2000.
[PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

