

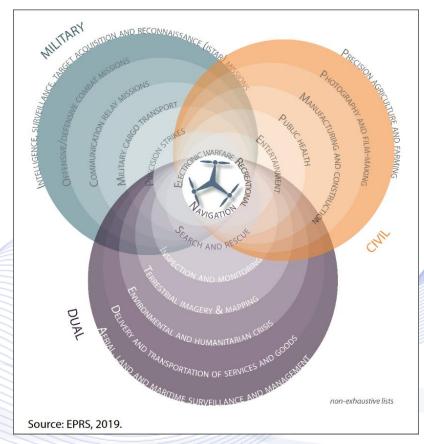
Drone Regulatory Issues summary

S. Altini, Prof. Ioannis Pitas Aristotle University of Thessaloniki

pitas@csd.auth.gr

Version 2.0.1

Privacy Protection, Ethics and regulations (VML


- Dual use
- Misuse avoidance & Data Security
- Data Protection
- Privacy Protection

Dual Use

• **Definition:** As dual-use products can be defined items, services, and technologies that take into account the needs of both defense and civilians. The EU controls exports, transits and brokering of dual-use items, which makes an effective contribution to global peace and security, avoiding the Mass Destruction Weapons' further proliferation.

Civilian use cases

- **Emergency response**: as mobile medical, sending first aid response, necessary help without delays, supplying isolated/infected patients;
- Cinematography/photography/filming: ensure aerial filming, capture a scene with HD
 quality, reducing the needs of high cost equipment and human interaction;
- **Search and rescue**: when human presence is deemed in risk or limited, and for lost or even stranded people etc.;

Civilian use cases

- Natural disaster response/control: environmental disaster relief operations, fire-fighting, humanitarian aid distribution, disaster consequences, check for injured and trapped survivors.
- Tourism: capture the spectacular views of touristic sights/areas of interest, amplifying the overall tourism industry;
- Inspecting infrastructure: for wear and damage;
- Other cases: farming, delivery, sports, help in identifying individuals using the GPS locations/MAV addresses.

Police use cases

- Track down suspects: aerial surveillance as cheaper and more flexible mean than a helicopter;
- Enhance traffic efficiency: offering accelerated response and road conditions identification;
- Crisis management: serve as hot spots or bases, gathering messages sent by affected human in case of natural disaster (earthquakes, floods) or in terrorist attack may act as Access Point;
- Surveillance purposes: detect hidden suspicious targets, on account to their ability ti identify humans from biometric data.

Military use cases

- intelligence, reconnaissance, and surveillance missions;
- combat missions through the use of armed drones;
- real-time protection of troops;
- direct target eradication, using laser-guided missiles against terrorist;
- covert aerial surveillance and reconnaissance, on account of the ability/capability to remain undetected of radar systems;
- intercept of footage in an attempt "to thwart a domestic terror attacks";
- · underwater "surveillance and reconnaissance operations".

Dual use: Risks for drones

Risks are mainly related to:

Export license

- Refusal of export license;
- Delivery of export license (delay);
- Provision of incorrect/missing information, regarding export license;
- Not required export license, however needed.

End-use statement update

- COTS component required;
- COTS must be mentioned in end-use statement/export license, granted by manufacturer;
- Updated end-use statement/export license, compliant to regulations.

Transfer of MULTI DRONE prototype

- Export license required, given by EU authority;
- Updated end-use statement/export license required.

Privacy Protection, Ethics and regulations (VML

- Dual use
- Misuse avoidance & Data Security
- Data Protection
- Privacy Protection

Drones: Security and Safety aspects

Classification of drones' communications:

- **Drone-To-Drone (D2D):** Peer-to-Peer (P2P) communication expose system in various P2P vulnerabilities and attacks (D-DoS, sybil attacks). Machine Learning optimizes the wireless communication system, but yet not reached the standardized status.
- **Drone-To-Ground station (D2GS):** communication used protocols (Bluetooth/Wi-Fi)/public and unsecure/using single factor authentication. Vulnerable functioning to active (man-in-the-middle) and passive (eavesdropping) attacks.
- Drone-To-Network (D2N): through this type, the given option is to choose the network, using the required security level, including cellular communications that, also, need to be secured.
- **Drone-To-Satellite (D2S):** communication used to send real-time coordinates via GPS. Satellite communications are considered as secure/safe, exhibit substantial cost/maintenance requirements.

Drones: Security and Safety aspects

Drones counter-drones cyberattacks

Туре	Nature	Privacy	Data Confidentiality	Integrity	Availability	Authentication	Non-Cryptographic	Cryptographic	
Malware	Infection	✓	√	✓	✓	✓	Hybrid lightweight IDS	Control access, system integrity solutions and multi-factor authentication	
BackDoor Access	Infection	✓	✓	✓	✓	✓	Hybrid lightweight IDS, vulnerability assessment	Multi-factor robust authentication scheme	JP.
Social Engineering	Exploitation	✓	✓	X	X	✓	Raising awareness, training operators	N/A	
Baiting	Exploitation	✓	✓	✓	X	✓	Raising awareness, training operators	N/A	ıac
Injection/Modification	Exploitation	✓	X	✓	X	X	Machine-Learning hybrid IDS, time stamps	Message authentication or digital signature	Yaacoub, H.
Fabrication	Exploitation	✓	X	✓	X	✓	, Assigning privilege	Multi-factor authentication, message authentication or digital signature	. Noura
Reconnaissance	Information gathering		✓	X	X	X	Hybrid lightweight IDS	Encrypted traffic/stream	.a c
Scanning	Information gathering	✓	✓	✓	X	X	Hybrid lightweight IDS or Honeypot	Encrypted traffic/stream	and
Three-Way Handshake	Interception	X	X	X	✓	✓	Traffic filtering, close unused TCP/FTP ports	X	0.
Eavesdropping	Interception	✓	✓	X	X	X	N/A	Securing communication/traffic, secure connection	Salman
Traffic Analysis	Interception	✓	Х	X	X	X	N/A	Securing communication/traffic, secure connection	et al./
Man-in-the-Middle	Authentication	✓	✓	✓	X	X	Lightweight hybrid IDS	Multi-factor authentication & lightweight strong cryptographic authentication protocol	et al./Internet
Password Breaking	Cracking	X	X	X	X	✓	Lightweight IDS	Strong periodic passwords, strong encryption	of Things
Wi-Fi Aircrack	Cracking	X	X	X	X	✓	Lightweight IDS at the physical layer	Strong & periodic passwords, strong encryption algorithm	ings 11
Wi-Fi Jamming	Jamming	X	Х	X	X	✓	Frequency hopping, frequency range variation	N/A	1 (202
De-Authentication	Jamming	X	X	X	X	✓	Frequency hopping, frequency range variation	N/A	(2020) 100218
Replay	Jamming	X	X	X	X	✓	Frequency hopping, time stamps	N/A	21
Buffer Overflow	Jamming	X	X	X	X	✓	Frequency hopping, frequency range variation	N/A	∞
Denial of Service	Jamming	X	X	X	X	✓	Frequency hopping, frequency range variation	N/A	
ARP Cache Poison	Jamming	X	X	X	X	✓	Frequency hopping, frequency range variation	N/A	
Ping-of-Death	Jamming	X	X	X	X	✓	Frequency range variation	N/A	
GPS Spoofing	Jamming	X	X	X	X	✓	Return-to-base, frequency range variation	N/A	

Privacy Protection, Ethics and regulations (VML

- Dual use
- Misuse avoidance & Data Security
- Data Protection
- Privacy Protection

Data Security requirements

Data security

- Data stored within drones:
 - Data encryption, enabling access only on people with authentication.
- Data stored in ground infrastructure:
 - Use of technologies, including memory isolation, provided by virtualization to control access to data between applications;
 - Hacking detection: shut down/lock/erase UAV devices to prevent uncontrolled capture of personal data.
- •Data transmitted over the air:
 - Wi-Fi/radio transmitted data are unencrypted (commercial use of drones);
 - Data protection with authentication and encryption mechanisms (IPSec protocol over LTE).
- Data to be distributed publicly (e.g. UAV datasets)

Data Protection issues in Drones

- Public perceives, when drones breach privacy: trespassing/flights above private property are forbidden. Distinction between:
 - actors, spectators, crowd;
 - public events, private events.
- Data protection issues for AV shooting:
 - broadcasting;
 - developing experimental databases.
- Use of data de-identification algorithms, during a shooting.

Privacy Protection, Ethics and regulations (VML

- Dual use
- Misuse avoidance & Data Security
- Data Protection
- Privacy Protection

Privacy Protection, ethical and regulatory issues

Ethics for Drones

- **Privacy:** entrance/view of drones in private spaces; issues concerning over privacy in public settings, e.g., recording capabilities;
- Safety: reckless/dangerous use of drones, especially in high-crowded areas (beaches, events);
- Enforceability: official possibility for imposing regulations in drones;
- Crime: used to thievery/break-in, infringement and trespassing;
- Nuisance: used to harass/disrupt of individuals in public setting;
- **Professionality:** whether regulation should be differentiated for professional and recreational purposes.

Legal, ethical, safety, security and regulations

Technical issues

- No-filming zones;
- No-flight zones;
- Face de-identification;
- Protection of private spaces.

Legal, ethical, safety, security and regulations

Technical issues

- No-filming zones;
- No-flight zones;
- Face de-identification;
- Protection of private spaces.

No-flight zones

- Static no-flight zones: defined by national regulations
 - Dynamic no-flight zones: crowded areas

- Flight supervisor can define static no-flight zones during mission planning.
- No-flight zones are automatically taken into account during mission planning and replanning.

Flight regulations

Different flight regulations are in force according to applications and UAVs types.

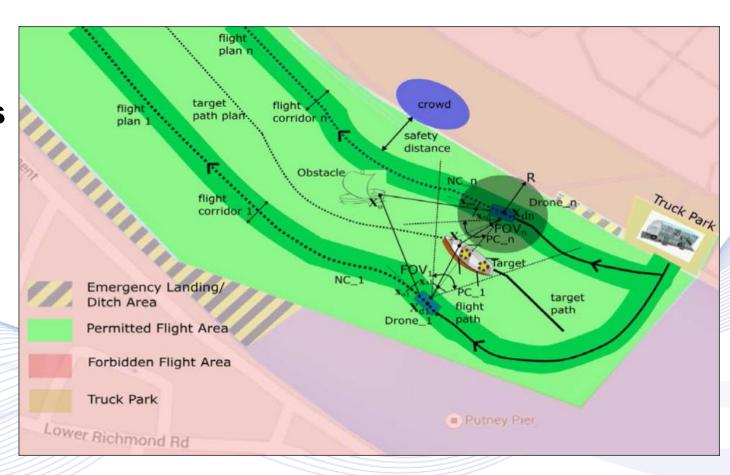
Restrictions

- Maximum UAV weight;
- Permitted flight radius;
- Special preconditions (e.g., licensed pilot requirements/insurance policies).

Notes

- Flight restrictions differ by country;
- Pilot license/insurance policies may not be internationally valid;
- Adjustment/replacement of components impacts on category classification (weight calculated by payload).

Other UAV safety issues


- Landing sites: Potential Landing Site Detection; Foreseen landing sites; Emergency landing site detection;
- Flight safety: Crowd detection and avoidance; Safety distance from crowds; Person/obstacle avoidance.

Flight safety

- Safety distance from crowds
 - Crowd detection and avoidance.
- Landing sites
 - Foreseen landing sites;
 - Emergency landing site detection;
 - Person/obstacle avoidance.

Privacy Protection, ethical and regulatory issues

Legal, ethical, safety and security, regulation

Technical issues:

- No-filming zones;
- No-flight zones;
- Face de-identification;
- Protection of private spaces.

Protection of private spaces

All drone operators are subjected to regulations of aviation, enforced by the CAA.

- Keeping drone in view: normally 500m horizontally and 400ft vertically;
- Keeping drone away from congested areas: any area used for residential, industrial, commercial or entertainment purposes;
- Keeping drones at least 50m away from individual/vehicle/building/structure not owned/controlled by the drone operator;
- Recorded data should be ensured that are under the Data Protection Act 1998 and/or 2018
 (DPA) and General Data Protection Regulation (GDPR).

Privacy protection, ethical and regulatory issues (VML

Legal, ethical, safety and security, regulation

Technical issues:

- No-filming zones;
- No-flight zones;
- Face de-identification;
- Protection of private spaces.

Q & A

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

