Digital Images summary

Prof. Ioannis Pitas Aristotle University of Thessaloniki

pitas@csd.auth.gr

www.aila.csd.auth.gr
Version 3.0.1

2D data types: images

Spatial coordinates x, y.

2D data types: images

- Still images/pictures: spatial 2D signals of the form $f(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$, having:
- domain \mathbb{R}^{2} and codomain \mathbb{R}.
- two spatial coordinates x, y.
- Image sampling/digitization transforms continuous coordinates images to digital images:

$$
f(i, j): \mathbb{Z}^{2} \rightarrow\left[0, \ldots, 2^{B}-1\right] .
$$

Digital Image Representation

Digital image representation by an $N \times M$ matrix i:

$$
\mathbf{i}=\left[\begin{array}{cccc}
i(1,1) & i(1,2) & \ldots & i(1, M) \\
i(2,1) & i(2,2) & \ldots & i(2, M) \\
\vdots & \vdots & \ldots & \vdots \\
i(N, 1) & i(N, 2) & \ldots & i(N, M)
\end{array}\right] .
$$

- Matrix elements (image pixels):
- integers in the range $[0, \ldots, 255]$ for 8 bit images.
- unsigned character representation in the C language.

Digital Image Representation

2D image storage.

Digital Image Representation

The entire two-dimensional array can be memory allocated in one memory block.

- Pointers point to image row first elements.

Single block image memory allocation.

Digital Image Representation

(α)

(β)
a) 2D matrix coordinates; b) Cartesian coordinates.

Elementary digital image processing operations

- Image addition, subtraction:

$$
c[i][j]=a[i][j] \pm b[i][j] .
$$

- Multiplication of an image by a constant:

$$
b[i][j]=c \cdot a[i][j] .
$$

- Point nonlinear transformations of the form:

$$
b[i][j]=h(a[i][j]) .
$$

Elementary digital image processing operations

Subtractive radiography (image registration and subtraction).

2D Image registration

- 2D image registration and mosaicking (averaging in overlapping parts .

Elementary digital image processing operations

- Clipping:

$$
\mathrm{b}[i][\mathrm{j}]=\left\{\begin{array}{cl}
c_{\max }, & \text { if } a[i][j]>c_{\max } . \\
a[i][j], & \text { if } c_{\min } \leq a[i][j] \leq c_{\max } . \\
c_{\min }, & \text { if } a[i][j]<c_{\max } .
\end{array}\right.
$$

- It is needed to retain pixel values in the range $\left[0, \ldots, 2^{B}-1\right]$.
- Thresholding:

$$
b[i][j]= \begin{cases}a_{1}, & \text { if } a[i][j]<T . \\ a_{2}, & \text { if } a[i][j] \geq T .\end{cases}
$$

Elementary digital image processing operations

都

a) Original image; b) Image thresholding.

Elementary digital image processing operations

Image negation.

Elementary digital image processing operations

Geometric image transforms:

- 2D Image translation:

$$
b[i][j]=a[i+k][j+l] .
$$

- 2D Image rotation. If the image point $a(x, y)$ is rotated by θ degrees, its new coordinates (x^{\prime}, y^{\prime}) are given by:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

Elementary digital image processing operations

Image rotation.

Bibliography

[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.
[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).
[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.
[NIK2000] N. Nikolaidis and I. Pitas, "3D Image Processing Algorithms", J. Wiley, 2000.
[PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

Q \& A

Thank you very much for your attention!
More material in
http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

