

Digital Image Filtering summary

C. Georgiadis, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 3.4

- Image noise
- 2D FIR filters
- Moving average filters
- Spatial filters
- Median filters
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation

Image noise

White additive noise:

x(i,j) = s(i,j) + n(i,j),

White multiplicative noise:

x(i,j) = s(i,j)n(i,j),

White signal-dependent noise:

 $x(i,j) = s^{\gamma}(i,j)n(i,j),$

 Noise can have various distributions: Gaussian, uniform, Laplacian.

Image noise

Salt-pepper noise consists of black and/or white image impulses:

 $g(i,j) = \begin{cases} z(i,j), & \text{with probability} & p. \\ f(i,j), & \text{with probability} & 1-p. \end{cases}$

Image noise

- Uniform noise has a *shorttailed* probability distribution.
- Laplacian noise has a *longtailed* probability distribution.
- Gaussian noise is at the borderline between long- and short tailed probability distributions.

- Image noise
- 2D FIR filters
- Moving average filters
- Spatial filters
- Median filter algorithms
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation

- Image noise
- 2D FIR filters
- Moving average filters
- Spatial filters
- Median filter algorithms
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation

2D FIR Digital Filters

The output of a 2D FIR filter is given by a *linear convolution*:

$$y(n_1, n_2) = \sum_{k_1=0}^{M_1-1} \sum_{k_2=0}^{M_2-1} h(k_1, k_2) x(n_1 - k_1, n_2 - k_2).$$

for a *filter window* (region of support) $[0, M_1 - 1] \times [0, M_2 - 1]$.

For centered filter window $[-v_{1, v_1}] \times [-v_{2, v_2}], M_i = 2v_i + 1, i = 1, 2$:

$$y(n_1, n_2) = \sum_{k_1 = -\nu_1}^{\nu_1} \sum_{k_2 = -\nu_2}^{\nu_2} h(k_1, k_2) x(n_1 - k_1, n_2 - k_2).$$

- Image noise
- 2D FIR filters
- Moving average filters
- Spatial filters
- Median filters
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation

2D FIR Digital Filters

Moving Average filter:

$$y(n_1, n_2) = \left(\frac{1}{M_1 M_2}\right) \sum_{k_1 = -\nu_1}^{\nu_1} \sum_{k_2 = -\nu_2}^{\nu_2} x(n_1 - k_1, n_2 - k_2)$$

where
$$M_i = 2v_i + 1$$
, $i = 1, 2$.

Properties:

- It is a linear FIR *low-pass filter*.
- It tends to blur edges and image details (e.g., lines, fine texture).
- It degrades image quality, particularly for large filter windows.

Moving Average Filter

 3×3 arithmetic moving average filter structure.

Moving Average Filter

 5×5 moving average image filtering [PIT2000].

L_p Mean Filter

a) Ultrasound image; b) Output of an L_2 filter [PIT2000].

- Image noise
- 2D FIR filters
- Moving average filters
- Spatial filters
- Median filters
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation

Spatial Filters

 5×5 discrete approximation of a Gaussian kernel for $\sigma = 1$.

VML

Unsharp Filter

Spatial Filters

Conservative smoothing assumes that noise has a high spatial frequency.

- It can be attenuated by a local operation which ensures pixel intensity consistency in local image neighborhoods.
- It ensures that pixel intensities are bounded within the intensity *range* of its neighbors, defined by their *minimum* and *maximum* intensity values.
- If the central pixel intensity lies within the intensity range of its neighbors, it remains unchanged.
- If it is greater/smaller than the maximum/minmum value, it is set equal to the maximum/minimum value, respectively.

Spatial Filters

Conservative smoothing

• The central pixel intensity is 150, so it will be replaced with the maximum intensity value (127) of its 8 nearest neighbors.

123	125	126	130	140
122	124	126	127	135
118	120	150	125	134
119	115	119	123	133
111	116	110	120	130

Conservative smoothing in a local pixel neighborhood.

- Image noise
- 2D FIR filters
- Moving average filters
- Spatial filters
- Median filters
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation

Median Filters

2D median filter:

 $y(i, j) = med\{x(i + r, j + s), (r, s) \in A, (i, j) \in \mathbb{Z}^2\}.$

Median filter properties:

- They have low-pass characteristics and remove additive white noise.
- They are very efficient in the removal of:
 impulsive noise,
 noise with long-tailed distribution (e.g., having Laplacian distribution).

a) Baboon image corrupted by mixed impulsive noise; b) 7×7 median filter output; c) 7×7 moving average filter output [PIT2000].

Median Filters

es the weighted L_1

Weighted median is the estimator T that minimizes the weighted L_1 norm:

$$\sum_{i=1}^{n} w_i |x_i - T| \to \min.$$

It is described by:

 $y_i = med\{w_{-v} \ {}^{\circ}x_{i-v}, \dots, w_v \ {}^{\circ}x_{i+v}\},\$

where $w \, x$ denotes duplication of x, w times to $\{x, ..., x\}$.

VML

- Image noise
- 2D FIR filters
- Moving average filters
- Spatial filters
- Median filters
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation

Order Statistics Filters

Ranked order filters:

An *r*-th ranked filter y_i output is the *r*-th order statistic of signal x_i samples $\{x_{i-\nu}, \dots, x_i, \dots, x_{i+\nu}\}$, $n = 2\nu + 1$ that exist in a *running filter* window.

- It introduces a strong bias in the estimation of the mean, when the rank is small or large (tending to *min* or *max filters*).
- The bias is even stronger when the input data have a long-tailed distribution.

Order Statistics Filters

Max/min filters:

Running maximum $x_{(n)}$ and **minimum** $x_{(1)}$ are the two extremes of the ranked-order filters.

- Maximum filter effectively removes negative impulses in an image.
- Minimum filter removes positive impulses.
- Both filters fail in the removal of mixed impulse noise.
- Both filters have good edge preservation properties (but shift edges).
- Max/min filters tend to enhance bright and dark image regions, respectively.

Order Statistics Filters

Max/min filters

a) Baboon image corrupted by mixed impulsive noise;b) The output of a cascade of a min and max filter [PIT2000].

- Image noise
- 2D FIR filters
- Moving average filters
- Spatial filters
- Median filters
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation

Adaptive Order Statistic Filters

Modified

Median Filter

Window Adaptation

Signal-adaptive median (SAM) filter:

• It is an adaptive filter based on the two-component image model:

$$y_{1ij} = \widehat{m}_x + b_{ij}(x_{ij} - \widehat{m}_x).$$

$$y_{ij} = r^{-1}(y_{1ij}).$$

 It has excellent performance in noise filtering, edge and image detail preservation.

 $r^{-1}()$

b_{ii}

Impulse Detection

Estimation

a) Original image;
 b) Image corrupted by Gaussian noise (variance=100) and mixed impulsive noise; c) SAM filter output [PIT2000].

(VML

- Image noise
- 2D FIR filters
- Moving average filters
- Spatial filters
- Median filters
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation

Anisotropic Diffusion

Image intensity f(i,j) can be considered as **pixel temperature** that can be diffused over the entire image domain, in an iterative process described by f(i,j,t) over various steps t.

Isotropic diffusion filtering can perform image smoothing:

$$\frac{\partial f}{\partial t} = c \operatorname{div}(\nabla f) = c \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right).$$

- c: diffusion coefficient.
- Diffusion is also used for image segmentation.

Anisotropic Diffusion

a) Original image; b-d) Various anisotropic diffusion iterations.

Anisotropic Diffusion

a) Original Byzantine painting with cracks.

- b) Localized cracks.
- c) Filled cracks using anisotropic diffusion.

Artificial Intelligence & Information Analysis Lab

3.35

- Image noise
- 2D FIR filters
- Moving average filters
- Spatial filters
- Median filters
- Digital filters based on order statistics
- Adaptive order statistic filters
- Anisotropic Diffusion
- Image interpolation

Image Interpolation

Image interpolation is an important operation with many applications:

- Image zooming (e.g., for video games)
- Image upsampling (e.g., in neural autoencoders or in neural semantic region segmentation.
- Image magnification/upsampling.
 - Video format conversion.

Image Interpolation

Zero-order (hold) interpolation: pixel (x, y) is assigned the value of the geometrically closest pixel in the image array:

$$f_i(n_1, n_2) = f([n_1/2], [n_2/2]).$$

- Repeated application: zooming by a factor of $2^n \times 2^n$.
 - For large n, regions of constant intensity (image blobs) are visible.
- It is sometimes used in video effect creation.

Image Interpolation

BABOON Image.

Zero-order interpolation.

Linear Interpolation.

Cubic spline Interpolation.

References

[PIT2000] I. Pitas, Digital Image Processing Algorithms and Applications, J. Wiley, 2000.

[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.

[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).

[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013. [NIK2000] N. Nikolaidis and I. Pitas, 3D Image Processing Algorithms, J. Wiley, 2000.

[PIT2000] I. Pitas, Digital Image Processing Algorithms, J. Wiley 2000. [FIS2003] R. Fisher, S. Perkins, A. Walker, E. Wolfart 2003 homepages.inf.ed.ac.uk/rbf/HIPR2/filtops.htm [Weickert 1998] J. Weickert, "Anisotropic Diffusion in Image Processing", Teubner, 1998.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

