

Digital Image Compression summary

Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 4.4

Digital Image Compression

- Introduction
- Huffman coding
- Run-length coding
- LZW compression
- Predictive coding
- Transform image coding
- JPEG2000

VML

Introduction

Digital image compression:

• Techniques and algorithms reducing the memory needed to represent and store digital images.

Compression factors:

- Storage and transmission of digital images.
- Bit-rate reduction during transmission.

Compression ratio is the ratio of the sizes of the compressed and the original image.

Lossless Compression

Lossless compression:

- No loss of information.
- Reduction of number of bits required for the original image representation, by eliminating statistical image redundancy.

It is used when:

- raw image data are difficult to obtain or
- images contain vital information that may be destroyed by compression, e.g., in forensics or medical diagnostic imaging.

Lossless Compression

- **Pros**: The decompressed image is numerically exactly the same as the original image.
- Cons: Compression ratio is not very big (e.g., up to 1:4).

Lossy Compression

Lossy compression

- Inflicts *distortion* on the original image, up to an *allowable* level.
- Distortion level determines the compression ratio.
- It is used when:
- raw image data can be easily produced or
- information loss can be tolerated at the receiver site, e.g., in Digital Television, Teleconferencing.

Lossy Compression

- **Pros**: It can offer a very good compression ratio (e.g., 1:100), by adjusting the compressed image distortion level appropriately.
- Cons: The compressed image distortion is sometimes perceivable.

Lossy Compression

Distortion $D(x, \hat{x})$ between the original image $x(n_1, n_2)$ and the reconstructed image $\hat{x}(n_1, n_2)$ can be measured in various ways.

 The default image distortion measure is the Mean Squared Error (MSE) which is defined as :

MSE
$$\triangleq \frac{1}{N_1 N_2} \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} (x(n_1, n_2) - \hat{x}(n_1, n_2))^2$$

Huffman coding

Pulse Coding Modulation (PCM):

- 2^B codewords having *B* bits/pixel.
- The *probability density function* (*pdf*) *p*(*i*) of image *i* can be estimated by calculating its histogram.
- The average number of bits per pixel can be reduced, by assigning binary codes of different bit length to the various image intensities.
- Short codewords are assigned to image intensities having a high probability of occurrence.
- Larger codewords to are assigned to less frequent image intensity levels.

Huffman coding

a) Construction of Huffman code tree;

b) Huffman tree rearrangement.

10

Run-length coding

Each image line can be represented as follows:

$$(x_1, \dots, x_M) \to (g_1, l_1), (g_2, l_2), \dots, (g_k, l_k)$$

 $g_1 = x_1, \qquad g_k = x_M,$

Each couple (g_i, l_i) is called gray-level run.

Run-length coding

 x_i

Graphical representation of an image line.

Modified READ coding

- Run-length coding is a one-dimensional scheme that cannot take into account vertical correlations among run transitions in consecutive image lines.
- Modified READ (Relative Element Address Designate) coding is a two-dimensional coding scheme that codes a binary image line with reference to the previous line.

Modified READ coding

(a) Pass mode

(b) Vertical and horizontal mode

Transition elements in modified READ coding.

LZW compression

- General-purpose compression scheme proposed by Lempel-Ziv and Welch.
- It can be used for the compression of any binary data file.

 It is incorporated in several de facto image storage standards (e.g., TIFF, GIF).

LZW compression

- It is a lossless, fast and effective algorithm and can operate on images of any bit depth.
- LZW compression is based on the construction of a code table that maps *frequently encountered bit strings* to output codewords.
- The digital image as well as the coded one is treated as a onedimensional bit string.

- One way to describe information redundancy in digital images is to use *local image neighborhood predictability*.
- Pixel intensity f(n,m) can be predicted from the pixel intensities in its *local neighborhood* A:

 $\hat{f}(n,m) = L[f(n-i,m-j), (i,j) \in \mathcal{A}, (i,j) \neq (0,0)].$

Causal prediction is used, which is based on already reconstructed past pixel values:

$$\hat{f}(n,m) = L[f_r(n-i,m-j), \quad (i,j) \in \mathcal{A}].$$

Causal windows used in image prediction.

Predictive Differential Pulse Code Modulation (**DPCM**) is extensively used in telecommunications.

- It is a lossy coding scheme.
- Error signal quantization always creates an irrecoverable amount of distortion.

Predictive differential pulse code modulation (DPCM).

- DPCM performance greatly depends on the *predictor* used and on the choice of its coefficients.
- Differential Pulse Code Modulation (DPCM) with *entropy* coding is a lossless coding scheme.

DPCM with entropy coding.

Let us suppose that image line f(m) can be modeled as a stationary *autoregressive* (*AR*) *process*:

$$f(m) = \sum_{k=1}^{p} a(k)f(m-k) + \varepsilon(m), \qquad E[\varepsilon^2(m)] = \sigma^2,$$

• $\varepsilon(m)$ is a white additive Gaussian noise that is uncorrelated to f(m).

 The prediction coefficients can be estimated, by solving the system of *normal equations*:

$$\begin{bmatrix} R(0) & R(1) & \cdots & R(p-1) \\ R(1) & R(0) & \cdots & R(p-2) \\ \vdots & \vdots & \vdots & \vdots \\ R(p-1) & R(p-2) & \cdots & R(0) \end{bmatrix} \begin{bmatrix} a(1) \\ a(2) \\ \vdots \\ a(p) \end{bmatrix} = \begin{bmatrix} R(1) \\ R(2) \\ \vdots \\ R(p) \end{bmatrix}$$

- The matrix is called *circulant* or *Toeplitz*.
- *R*(*k*) is the image row *autocorrelation function*.

Digital image transforms concentrate image energy in a few transform coefficients.

 Heavy quantization or deletion of most transform coefficients leads to big lossy compression.

- Let **f** be a vector representing an image of size $L = N \times M$ pixels.
- The transform coefficient vector **F** is given by:

 $\mathbf{F} = \mathbf{A}\mathbf{f}$.

- A is the *transform matrix*.
- The inverse transform is defined as follows:

 $\mathbf{f} = \mathbf{A}^{-1}\mathbf{F}.$

a) Image LENNA;

b) Energy concentration in low DFT frequencies.

I. Pitas Digital Image Processing Fundamentals Digital Image Transform Algorithms

2D Discrete Cosine Transform

2D $N_1 \times N_2$ DCT is defined as:

$$C(k_1, k_2) = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} 4x (n_1, n_2) \cos \frac{(2n_1+1)k_1\pi}{2N_1} \cos \frac{(2n_2+1)k_2\pi}{2N_2},$$

for $0 \le k_1 \le N_1 - 1, 0 \le k_2 \le N_2 - 1.$

$$x(n_1, n_2) = \frac{1}{N_1 N_2} \sum_{k_1=0}^{N_1 - 1} \sum_{k_2=0}^{N_2 - 1} w_1(k_1) w_2(k_2) C(k_1, k_2) \cos \frac{(2n_1 + 1)k_1 \pi}{2N_1} \cos \frac{(2n_2 + 1)k_2 \pi}{2N_2}$$

where:

$$w_1(k_1) = \begin{cases} 1/2 & k_1 = 0\\ 1 & 1 \le k_1 \le N_1 - 1 \end{cases}$$

$$w_2(k_2) = \begin{cases} 1/2 & k_2 = 0\\ 1 & 1 \le k_2 \le N_2 - 1 \end{cases}$$

a) Image LENNA;

b) Energy concentration in low DCT frequencies.

I. Pitas Digital Image Processing Fundamentals Digital Image Transform Algorithms

8	7	6	5	3	3	2	2	2	1	1	1	1	1	0	0
7	6	5	4	3	3	2	2	1	1	1	1	1	0	0	0
6	5	4	3	3	2	2	2	1	1	1	1	1	0	0	0
5	4	3	3	3	2	2	2	1	1	1	1	1	0	0	0
3	3	3	3	2	2	2	1	1	1	1	1	0	0	0	0
3	3	2	2	2	2	2	1	1	1	1	1	0	0	0	0
2	2	2	2	2	2	1	1	1	1	1	0	0	0	0	0
2	2	2	2	1	1	1	1	1	1	1	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit allocation in a 16×16 block of DCT coefficients.

a) Original image;

b) JPEG compressed image.

30

a) Original image;
b) 90% JPEG compression quality;
c) 5% JPEG compression quality;
d) 1% JPEG compression quality.

- JPEG2000 standard was introduced in order to overcome weaknesses of other compression methods (e.g., JPEG).
- Designed to be used by many image types (Greyscale, color, 2D, 3D) for various applications (scientific, medical etc.).
- Its goal was to achieve better *rate-distortion* characteristics and *subjective quality* of the compressed image.
- Rate-Distortion Optimization (RDO) was employed.
- It is the only standard compression scheme that provides both lossless and lossy compression.

- JPEG2000 performs extremely well in some applications, where other compression methods are frailling.
- It is ideal for large images, or images having low-contrast edges (e.g., medical images).

Losseless and lossy compression can be provided within a single compressed bit-stream by using *Discrete Wavelet Transform* (*DWT*). It is the only compression standard that offers that solution.

JPEG2000 supports progressive compression:

Progressive transmission By Resolution (PBR).

 Image size increases by loading new bits, until the original image size is reached.

Progressive transmission By pixel Accuracy (PBA).

 Image quality is improved by loading new bits, until original pixel quality is reached.

Region-Of-Interest (ROI) coding.

- Favored image regions are compressed at top resolution.
- Other image regions can be encoded at smaller resolution.
- In some cases, irrelevant image regions can be entirely masked out.
- The user can randomly access and modify image regions that are not heavily distorted.

Bibliography

[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.

[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).

[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.
[NIK2000] N. Nikolaidis and I. Pitas, "3D Image Processing Algorithms", J. Wiley, 2000.
[PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

