

Digital Filter Structures summary

M. Zikou, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 1.2.1

- IIR Filter Structures
 - Direct Filter Structure
 - Cascade Filter Structure
 - Parallel Filter Structure
 - Transposed Filter Structure
- FIR Filter Structures

Artificial Intelligence & Information Analysis Lab

- Direct Filter Structure
- Cascade Filter Structure
- Parallel Filter Structure
- Frequency Sampling Structure

Criteria for suitable structure

- 1. Number of additions and multiplications
- 2. Number of additions and multiplications (for parallel implementation)
- 3. Number of registers and delay units
- 4. Calculation speed for serial or parallel implementation
- 5. Characteristic diagrams of errors

Fundamental blocks

- a) Adders
- b) Multipliers
- c) Delay units

Implementation of the secondary IIR digital filter based on the fundamental blocks:

$$y(n) = a_1(n-1) + a_2y(n-2) + bx(n)$$

- IIR Filter Structure
- FIR Filter Structure

Structures

- Direct Filter Structure I
- Irregular Filter Structure II
- Direct Filter Structure II
- Cascade Filter Structure
- Parallel Filter Structure
- Transposed Direct Filter Structure I
- Transposed Direct Filter Structure II

An IIR filter with the following transfer function:

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 - \sum_{k=0}^{N} a_k z^{-k}}$$

can be described by the function:

$$y(n) = \sum_{k=0}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k y(n-k)$$

Direct Filter Structure I

A simple implementation of the IIR filter described.

Direct Filter Structure II

The delay lines are merged into one.

Minimum number of delays is achieved.

Cascade Filter Structure

Used in the implementation of digital filters, because there is only one elementary block whose coefficients are changing.

Parallel Filter Structure

If M < N then: $H(z) = \sum_{k=1}^{[(N+1)/2]} \frac{\gamma_{0k} + \gamma_{1k} z^{-1}}{1 - \alpha_{1k} z^{-1} - \alpha_{2k} z^{-2}}$ x(z) $H_2(z)$ $H_2(z)$ $H_N(z)$

Transposed Direct Filter Structure I

Transposed Direct Filter Structure II

- IIR Filter Structure
- FIR Filter Structure

Structures

- Direct Filter Structure
- Transposed Direct Filter Structure
- Cascade Filter Structure
- Lagrange Filter Structure
- Frequency Sampling Structure
- Linear Phase Even Structure
- Linear Phase Odd Structure

FIR filter is described by the equation:

$$H(z) = \sum_{n=0}^{N-1} h(n) z^{-n}$$

Direct Filter Structure

Transposed Direct Filter Structure

Cascade Filter Structure

Lagrange Filter Structure

Frequency Sampling Structure

Linear Phase Even Structure

Linear Phase Odd Structure

Bibliography

[OPP2013] A. Oppenheim, A. Willsky, Signals and Systems, Pearson New International, 2013.

[MIT1997] S. K. Mitra, Digital Signal Processing, McGraw-Hill, 1997.

[OPP1999] A.V. Oppenheim, Discrete-time signal processing, Pearson Education India, 1999.

[HAY2007] S. Haykin, B. Van Veen, Signals and systems, John Wiley, 2007.

[LAT2005] B. P. Lathi, Linear Systems and Signals, Oxford University Press, 2005. [HWE2013] H. Hwei. Schaum's Outline of Signals and Systems, McGraw-Hill, 2013.

[MCC2003] J. McClellan, R. W. Schafer, and M. A. Yoder, Signal Processing, Pearson Education Prentice Hall, 2003.

Bibliography

[PHI2008] C. L. Phillips, J. M. Parr, and E. A. Riskin, Signals, Systems, and Transforms, Pearson Education, 2008.

[PRO2007] J.G. Proakis, D.G. Manolakis, Digital signal processing. PHI Publication, 2007.

[DUT2009] T. Dutoit and F. Marques, Applied Signal Processing. A MATLAB-Based Proof of Concept. New York, N.Y.: Springer, 2009

Bibliography

[PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.

[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).

[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013. [NIK2000] N. Nikolaidis and I. Pitas, "3D Image Processing Algorithms", J. Wiley, 2000.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

