

Crowd Detection and Analysis summary

A.Tsamoglou, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 2.1

Crowd Analysis

- Object Detection
- Pedestrian Detection
- Crowd Detection
- Crowd Counting/Density
- Crowd Tracking
- Crowd Behavior Analysis

Crowd Analysis

What is Crowd Analysis?

- Crowd analysis is the practice of interpreting data on the natural movement of groups or objects.
- Masses of bodies, particularly humans, are the subjects of these crowd tracking analyses that include how a particular crowd moves and when a movement pattern changes.

Crowd Analysis

 Researchers use the data to predict future crowd movement, crowd density, and plan responses to potential events such as those that require evacuation routes.

Pedestrian Detection

- Pedestrian detection is a class of Object detection which we need to detect only person class.
- Pedestrian Detection is in a good level in practice but the problem starts when we have crowd situations

Pedestrian Detection

Pedestrian Detection Challenges:

- Various style of clothing in appearanceDifferent possible articulations
- The presence of occluding accessories
- Frequent occlusion between pedestrians

Crowd Detection

What is crowd?

- The crowd is a large group of people that are gathered or considered together . A crowd may be definable through a common purpose or set of emotions:
 - a political rally ,
 - a sports event,
 - during looting
 - many people going about their business in a busy area.

Crowd Detection

- Why Person Detection is Challenging:
 - Limited resolution of images
 - Variation in clothing
 - Pose
 - Illumination

Crowd Detection

- Why Person Detection is Challenging:
 - Crowd situation
 - Noise in images
 - Not good captures
 - Heavy proccess, need quick decision (Drones)

ML

Crowd detection using commentation commentation

- The crowd detection problem is effectively approached using semantic image segmentation.
- If only two object classes are considered (i.e., crowd, no-crowd), semantic image segmentation corresponds to crowd detection.

Crowd detection using semantic image segmentation

Artificial Intelligence & Information Analysis Lab

Crowd detection using semantic image segmentation

Crowd detection using **CML** semantic image segmentation

Artificial Intelligence & Information Analysis Lab

Crowd Counting/Density

Crowd counting/density is the problem of estimating the number of people in a still image or a video. It has drawn a lot of attention due to the need for solving this problem in many real-world applications such as video surveillance, traffic control, and emergency management.

Crowd Counting

Crowd counting can be a byproduct of face detection.

Crowd Counting

- Crowd counting can also be formulated as a density map estimation problem.
- A crowd density map also provides location information about the crowd distribution.

Detecting and tracking people in crowded scenes is a crucial component for a wide range of applications including:

- surveillance,
- group behavior modeling,
- crowd disaster prevention.

VML

Crowd Tracking

Tracking individuals in a high density crowd scene is challenging for a number of reasons:

- the number of pixels on an object decreases with the increasing density of the object
- constant interaction among the individuals in a crowd makes it hard to discern individuals from one another.

- occlusions caused by interactive object interactions result in the loss of observation of the target object.
- the mechanics of a human crowd is complex as it exhibits goal-directed dynamics and psychological characteristics which in turn influence how an individual person will behave in a crowd.

Crowd Model:

Energy Formulation:

- First we assume to have a confidence score s(p) of a person detector for each location p_i , $i = 1 \dots N$ in an image.
- we are given a person density, D(p_i) estimated in a window of size σ at each location p_i.

Crowd Behavior Analysis

• The behavioral analysis of a crowd is an important topic of research in computer vision. In general, the temporal information is used to estimate the behavior of a crowd in a given enviroment.

Crowd Behavior Analysis

- Why simulate crowd movement and evacuations?
 - The experimental investigation of crowd movement and especially emergency egress are limited by:
 - Practical,
 - Ethical,
 - Financial,
 - Logical constraints.

Crowd Behavior Analysis

Bibliography

- [ALKR 2012] ImageNet Classification with Deep Convolutional Neural Networks alex net, Alex Krizhevsky, Ilya Sutskever, Geoffrey E.Hinton
- [DWOL 2014] Parameter Estimation and Comparative Evaluation of Crowd Simulations D. Wolinski1 S.
 J. Guy2 A.-H. Olivier1 M. Lin3 D. Manocha3 J. Pettré1
- [JIWA 2019]Adaptive Density Map Generation for Crowd Counting, Jia Wan and Antoni Chan Department of Computer Science, City University of Hong kong
- [MSCH 2005]Models for Crowd Movement and Egress Simulation H. Kl⁻upfel1, M. Schreckenberg 2, and T. Meyer-K⁻onig3
- Wikipedia
- [JUCE 2010]Crowd Analysis Using Computer Vision Techniques, Julio Cezar Silveira Jacques Junior, Soraia Raupp Musse, and Cláudio Rosito Jung
- [MIRO 2011] Density-aware person detection and tracking in crowds Mikel Rodriguez ,Ivan Laptev2,4 Josef Sivic, Jean-Yves Audibert
- <u>https://machinelearningmastery.com/object-recognition-with-deep-learning/</u>
- [EMTR 2006] Video Tracking: A Concise Survey, Emanuele Trucco and Konstantinos Plakas

Bibliography

[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.

[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).

[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.
 [NIK2000] N. Nikolaidis and I. Pitas, "3D Image Processing Algorithms", J. Wiley, 2000.
 [PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

