

Continuous-time Signals and Systems Summary

T. Stampolidou, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 3.2

Continuous-time Signals and Systems

Continuous-time Signals

Signal Operations

Artificial Intelligence & Information Analysis Lab

- Important continuous-time signals
- **Continuous-time LTI Systems**
 - LTI System response, Convolution, Correlation
 - Properties of LTI Systems
 - Eigenfunctions of LTI Systems

Standard Differential Equation for LTI Systems

Continuous-time Signals

A function of a continuous variable (typically real variable) is called continuous-time signal x(t), where $t \in \mathbb{R}$.

• Typically, *t* denotes time.

Continuous-time Signals

(t)

Т

A continuous-time signal x(t) is **periodic**, when there is a positive non-zero value *T* for which:

x(t + T) = x(t) for all t.

- *T* is referred to as the period of the signal.
- **Frequency**: $F = \frac{1}{T}$. It is measured in Hertz (Hz).
- Angular frequency: $\Omega = 2\pi F = \frac{2\pi}{T}$.

Artificial Intelligence & Information Analysis Lab

Important continuous-time signals **CML**

- Trigonometric signals
- Complex exponential signal
- Real exponential signal
- Unit impulse signal
- Unit step signal

Important continuous-time signals **CML**

x(t)

▲ x(t)

Complex exponential signal:

$$x(t) = e^{st} = e^{(\sigma + i\Omega t)} = e^{\sigma t} (\cos\Omega t + i \sin\Omega t).$$

Its real and imaginary part are exponentially increasing ($\sigma > 0$) or decreasing ($\sigma < 0$) sinusoidal signals.

Important continuous-time signals **CML**

Delta function definition as a limit of a sequence of functions $\delta_k(t)$:

exponential or sync functions.

Artificial Intelligence & Information Analysis Lab

varying variance.

Continuous-time Signals and Systems

- Continuous-time Signals
 - Signal Operations

Artificial Intelligence & Information Analysis Lab

- Important continuous-time signals
- **Continuous-time LTI Systems**
 - LTI System response, Convolution, Correlation
 - Properties of LTI Systems
 - Eigenfunctions of LTI Systems

Standard Differential Equation for LTI Systems

Continuous-time Systems

$$x(t) \longrightarrow$$
 Transformation $\longrightarrow y(t)$

Continuous input

Continuous output

System definition: a transformation of input signal x(t) into output signal y(t):

y(t) = T[x(t)].

Responses of LTI Systems

Impulse Response and convolution:

$$x(t) \longrightarrow$$
 LTI System $\longrightarrow y(t)$

When the input of an LTI system is the delta function $\delta(t)$, its output is called *impulse response* h(t).

LTI system output is a *convolution* of input signal x(t) and impulse response h(t):

$$y(t) \stackrel{\Delta}{=} x(t) * h(t) \stackrel{\Delta}{=} \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau.$$

• h(t) is flipped about $\tau = 0$ and shifted to the right by t.

Convolution

Convolution Properties:

- LTI system output to delta function input: $y(t) = \delta(t) * h(t) = h(t).$
- **Commutativity**: $h_1(t) * h_2(t) = h_2(t) * h_1(t)$

$$\begin{aligned} x(t) &\longrightarrow h_1(t) & \to h_2(t) & \to y(t) \\ x(t) &\longrightarrow h_2(t) & \to h_1(t) & \to y(t) \end{aligned}$$

Convolution

Example 1

Information Analysis Lab

for t < 0:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = 0$$

for
$$0 \le t < 1$$
:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = \int_{0}^{t} d\tau = t$$

Convolution

Example 1

Correlation

Correlation of two signals:

$$r_{xh}(t) = \int_{-\infty}^{\infty} x^*(\tau)h(t+\tau)d\tau.$$

- when x(t) is a complex signal, the complex conjugate signal x*(t) is used in correlation.
- In correlation, unlike in convolution, h(t) is not time-flipped.
- It is frequently confused with convolution. They are equivalent iff h(t) is symmetric about t = 0.

Correlation

Correlation applications:

• *Time-of-Flight* methods for measuring distance.

Seismic oil exploration.

Artificial Intelligence & Information Analysis Lab

Properties of LTI Systems

- Memory (with/without)
- Causality
- Stability (BIBO)
- Invertibility

Properties of LTI Systems

• The output of a *system with memory* is generated by processing both its current and the previous input values.

Examples:

• Capacitor:

$$v(t) = \frac{1}{c} \int_{-\infty}^{t} i(\tau) d\tau.$$

- Same model can be used for integrators of any form,
 - hydraulic tanks, deposit accounts.

Properties of LTI Systems

- Unstable systems are undesirable.
- Stability: A system is Bounded Input-Bounded Output (BIBO) stable, if any bounded input results in a bounded output (i.e., output never gets infinite values).
- The impulse response of a BIBO stable system should satisfy:

 $|h(t)|dt < \infty$.

• The absolute integrability of the impulse response h(t) is a sufficient condition for BIBO stability.

Differential Equations for LTI Systems

Continuous-time LTI systems can be described by **ordinary** *differential equations*:

$$a_n \frac{d^n y(t)}{dt^n} + a_{n-1} \frac{d^{n-1} y(t)}{dt^{n-1}} + \dots + a_0 y(t) =$$

$$b_m \frac{d^m x(t)}{dt^m} + b_{m-1} \frac{d^{m-1} x(t)}{dt^{m-1}} + \dots + b_0 x(t).$$

y(t)

Differential Equations for LTI Systems

R

C

x(t)

Example:

• The input-output relation of an *RC* electric filter is given by:

 $RC\frac{dy(t)}{dt} + y(t) = x(t).$

- RC: RC time constant.
- It can perform delay operations.

Artificial Intelligence & Information Analysis Lab

Eigenfunctions of LTI Systems

est: *eigenfunction* of the LTI System.

 λ : *eigenvalue* of the LTI system.

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

