Color Theory summary

Prof. Ioannis Pitas
Aristotle University of Thessaloniki pitas@csd.auth.gr
www.aiia.csd.auth.gr
Version 3.0

Color theory

- Visible light: an electromagnetic wave with wavelength λ varying in the range $380-780 \mathrm{~nm}$.
- Perceived color: depends on the spectral content of the light.
- Red light: a signal with energy concentrated around 700 nm .
- White light: a signal with evenly distributed energy across the wavelength spectrum.
- Monochromatic color: a color with a very narrow spectral content (typically single-wavelength light).

Color theory

Human Visual System (HVS):

- Eye retina has cones and rods.
- Rods are responsible for night vision (scotopic vision).
- They are plenty and have low-pass characteristics.
- Cones are responsible for day vision and for color perception.
- They are fewer and concentrate at the retina

Color theory

- Cone response to an incoming signal can be described by:

$$
C_{i}=\int f_{a}(\lambda) h_{i}(\lambda) d \lambda, \quad i=r, g, b
$$

- $h_{r}(\lambda), h_{g}(\lambda), h_{b}(\lambda)$: red, green and blue cone sensitivities.
- The combination of these three types of sensors enables the human eye to perceive any color.
- Trichromatic color vision: the perceived color depends only on three numbers C_{r}, C_{g}, C_{b}, rather than $f_{\alpha}(\lambda)$.

Color theory

Color cone sensitivities.

Color theory

- Similarly, artificial optical sensors (e.g., CCD-based ones) can become sensitive to red, green and blue light, respectively.
- Bayer filters are overlaid on CCD cells to enable color sensitivity.

Color theory

Multispectral/multichannel (n-channel) images are 2D vectorial functions of the form:

$$
f(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}^{n}
$$

Special cases:

- Color images $(n=3)$:

$$
\boldsymbol{f}(x, y)=\left[f_{R}(x, y), f_{G}(x, y), f_{B}(x, y)\right]^{T}: \quad \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} .
$$

- Digital color images (assigning b bits per color channel to each voxel):

$$
\boldsymbol{f}\left(n_{1}, n_{2}\right): \mathbb{Z}^{2} \rightarrow\left\{0, \ldots, 2^{b}-1\right\}^{3} .
$$

Color theory

- Multichannel images can also be considered as 3D images:

$$
f\left(n_{1}, n_{2}, i\right), i=1,2,3 .
$$

- Hyperspectral images are 3D images of the form:

$$
f(x, y, \lambda): \quad \mathbb{R}^{3} \rightarrow \mathbb{R} .
$$

- λ : light wavelength.
- Infrared images: $f(x, y, \lambda), \lambda>780 \mathrm{~nm}$.
- Ultraviolet images: $f(x, y, \lambda), \lambda<380 \mathrm{~nm}$.

Color theory

Infrared painting reflectography mosaicing.

Color theory

Multichannel images: visible (left), X-ray (middle) overlaid image channels(right).

Color theory

Color opponency.

- In V1 and LNG there are center-surround color opponent cells.
- Trained CNN kernels support color opponency.

Color theory

T. Young color theory (1802): Any color can be produced by mixing three basic colors C_{1}, C_{2}, C_{3} at appropriate proportions:

$$
C=a C_{1}+b C_{2}+c C_{3} .
$$

- Each color image pixel can be represented by a vector $[a, b, c]^{T}$ in the 3D space $\left(C_{1}, C_{2}, C_{3}\right)$.
- The individual color chromaticities are defined by:

$$
c_{i}=\frac{C_{i}}{C_{1}+C_{2}+C_{3}}, \quad i=1,2,3
$$

Color coordinate systems

CIE also proposed the XYZ color system:

- Hypothetical coordinates X, Y, Z.
- White reference color: $X=Y=Z=1$.
- Linear transformation of RGB to XYZ color systems:

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{lll}
0.490 & 0.310 & 0.200 \\
0.177 & 0.813 & 0.011 \\
0.000 & 0.010 & 0.990
\end{array}\right]\left[\begin{array}{l}
R_{C I E} \\
G_{C I E} \\
B_{C I E}
\end{array}\right] .
$$

Color coordinate systems

- The color coordinates:

$$
x=\frac{X}{X+Y+Z}, y=\frac{Y}{X+Y+Z}
$$

can be used to produce a chromaticity diagram.

- Ellipses correspond to colors which cannot be discerned by the human visual system.

Color coordinate systems

$\boldsymbol{L}^{*} \boldsymbol{a}^{*} \boldsymbol{b}^{*}$ Color System is also used to measure color differences:

$$
\begin{gathered}
L^{*}=25\left(100 Y / Y_{0}\right)^{1 / 3}-16, \quad 1 \leq 100 Y \leq 100 \\
a^{*}=500\left[\left(X / X_{0}\right)^{1 / 3}-\left(Y / Y_{0}\right)^{1 / 3}\right] \\
b^{*}=200\left[\left(Y / Y_{0}\right)^{1 / 3}-\left(Z / Z_{0}\right)^{1 / 3}\right]
\end{gathered}
$$

- $\left(X_{0}, Y_{0}, Z_{0}\right)$: reference white light;

Color coordinate systems

- L^{*} : brightness;
- $a^{*} b^{*}$: chromaticity in the red-green and yellow-blue light domains.
- Color difference ΔC in $L^{*} a^{*} b^{*}$:

$$
\Delta C^{2}=\left(\Delta L^{*}\right)^{2}+\left(\Delta a^{*}\right)^{2}+\left(\Delta b^{*}\right)^{2}
$$

Color coordinate systems

Byzantine painting restoration using the $L^{*} a^{*} b^{*}$ Color System.

Color coordinate systems

YIQ color space used in NTSC:

$$
\left[\begin{array}{l}
Y \\
I \\
Q
\end{array}\right]=\left[\begin{array}{ccc}
0.299 & 0.587 & 0.114 \\
0.596 & -0.274 & -0.322 \\
0.211 & -0.523 & 0.312
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right] .
$$

- Y : luminance component.
- I, Q : image chrominance.
- Advantages of the YIQ color space:
- It guarantees backwards compatibility with monochrome television.

Color coordinate systems

$Y C_{b} C_{r}$ color space is an efficient color representation in European analog and digital TV systems.

- Luminance channel Y :

$$
Y=k_{r} R+k_{g} G+k_{b} B .
$$

- Typical k coefficients: $k_{r}=0.299, k_{g}=0.587, k_{b}=$ 0.114.
- Small weight on the B channel.
- Chrominance information can be represented as:

$$
C_{b}=B-Y
$$

$$
C_{r}=R-Y
$$

Color coordinate systems

subsampling 4:2:2

subsampling 4:4:4
$4: 2: 0,4: 2: 2,4: 4: 4 \quad C_{b}, C_{r}$ chrominance subsampling systems.

Color coordinate systems

Human visual perception of the following three color properties:

- Hue determines color redness, greenness, blueness.
- Saturation defines the percentage of white light added to a pure color.
- For example, red is a highly saturated color, whereas pink is less saturated.
- Brightness indicates the perceived light luminance.

Color coordinate systems

Hue, saturation and brightness define a cylindrical color coordinate system:

- Brightness I varies from pure black ($I=0$) to pure white color $(I=1)$.
- Saturation S ranges from pure gray ($S=0$) to highly saturated colors $(S=1)$.
- Hue H is measured by the angle between the actual color vector and a

Color coordinate systems

Color coordinate systems

(Hue, Saturation, Intensity):

- It is a cylindrical coordinate system whose axis is the diagonal line $R=G=B$ in the RGB space.
- Only the HIS colors that are inside the RGB cube can be
 displayed.

Color coordinate systems

Subtractive colors:

- cyan, magenta, yellow = subtractive primaries
- red, green, blue = additive primaries
- cyan, magenta, yellow (complementary of red, green, blue primary colors).
CMYK color system: subtractive color model complemented with black color.
- It is mainly used in color image printing (4 inks).

Color coordinate systems

Additive and subtractive primary colors.

Color coordinate systems

Color image CMYK dithering.

Color coordinate systems

Face, body skin detection.

Color coordinate systems

Face, hand detection:

- They can be used for human eating/drinking
 activity recognition.
- Drinking activity
 (to prevent dehydration).

Bibliography

[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.
[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).
[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.
[NIK2000] N. Nikolaidis and I. Pitas, "3D Image Processing Algorithms", J. Wiley, 2000.
[PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

Q \& A

Thank you very much for your attention!

Contact: Prof. I. Pitas pitas@csd.auth.gr

