Autonomous Underwater Vessels summary

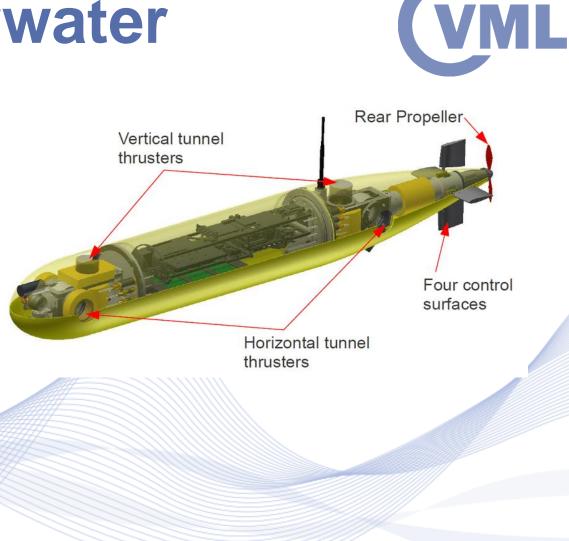
VML

D. Paspalas, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 2.2.1

- Autonomous Underwater Vessels
- AUV technologies
- AUV sensors
- AUV communications
- AUV applications



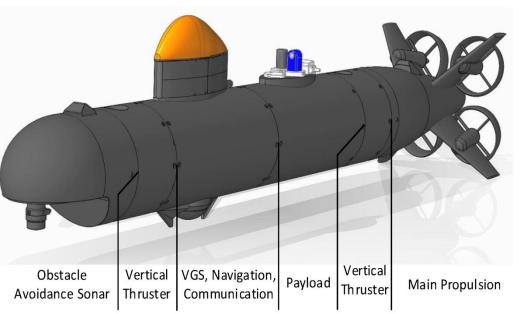
- Autonomous Underwater Vessels (AUVs) operate autonomously, ideally without any human intervention.
- Alternatively, they may be teleoperated.
- Their operator, who may be on shore or aboard a ship.
- AUVs can operate at various depths:
 - From intertidal waters (between the limits of high and low tide) up to 6,000-meter depth.


- Autonomous Marine Systems produce data that can change ocean exploration and studies.
- A low-cost, fully autonomous vessel can deliver real-time ocean intelligence from anywhere around the world.
- No risk to human life.

AUV cons:

- they are expensive to purchase,
- highly expensive to operate.
- They requiring dedicated technical support, and maintenance.

- Fully autonomous vessels carry power source on-board to enable propellers or thrusters for AUV motion.
- Most AUVs use specialized batteries, although some AUVs have used fuel cells or rechargeable solar power.
- Certain AUVs, such as gliders, minimize energy demands by allowing gravity and buoyancy to propel them.
- AUVs can run for as short as minutes/hours or as long as days or even months before the battery needs recharging.


• AUVs are often used as survey platforms to map the seafloor or characterize physical or chemical properties of the seabed.

VML

- AUVs can be equipped with:
 - Sonar and underwater sensors.
 - Video cameras,
 - Robotic tools, such as drills.
 - Conductivity, temperature, and depth (CTD) sensors.
 - Water sample carousels.

VML

 Data are recorded and are then either transmitted via satellite when the AUV comes to the surface, or downloaded when the vehicle is recovered.

AUVs have a wide range of sizes and shapes to meet the required depth range, payload, power needs, and scientific objectives.

- A submarine glider is an AUV that employs variable-buoyancy propulsion, instead of traditional propellers or thrusters.
- Gliders use small changes in buoyancy in conjunction with wings, to convert vertical fall to forward motion, allowing the instrument to move horizontally at speeds of around 0.5 m/s with low power consumption.

- They require reduced or no human assistance while traveling, they are suited for collecting data in remote locations, safely and at relatively low cost.
- They serve as a convenient platform for a variety of ocean sensors, such as temperature, conductivity, dissolved oxygen and various biooptical measurements.

VML

Five levels of AUS autonomy:

- No autonomy: All aspects of operational tasks perform by human operator, even when enhanced with warning or intervention system.
- Partial Autonomy: The targeted operational tasks are performed by a human operator that can transfer control of specific sub-tasks to the system. The human operator has overall control of the system and safely operates the system at all time.

- **Conditional autonomy**: The targeted operational tasks are performed by AVS, without human interaction, while a human operator performs the remaining tasks. Human operator is responsible for its safe operation.
- High Autonomy: The targeted operational tasks are performed by AVS, without human interaction, while a human operator performs the remaining tasks. AVS system is responsible for its safe operation.
- Full Autonomy: All operational tasks perform by AVS, under any conditions.

AUS system autonomy depends on its communication capabilities:

- Low communication requirements and less crew is needed for high level of autonomy.
- For low level of autonomy, needs more crew and bigger communication capabilities.

VML

Level of autonomy:

- Data collected by AUVs are stored in their internal memory and they are not available to the operator until retrieval of the vehicle.
- Underwater data transmission requires a large bandwidth that is not currenly available.

BOATMASTER PERFORMS PART OR ALL OF THE DYNAMIC NAVIGATION TASKS	0	NO AUTOMATION the full-time performance by the human boatmaster of all aspects of the dynamic navigation tasks, even when supported by warning or intervention systems E.g. navigation with support of radar installation			R	No Subject to context specific execution, remote control is possible (vessel command, pronitoring of and responding to navigational environment and fallback performance) It may have an influence on creve requirements (number or qualification).
	1	STEERING ASSISTANCE the context-specific performance by <u>a steering automation system</u> using certain information about the avigational environment and with the expectation that the human boatmaster performs all remaining aspects of the dynamic navigation tasks E.g. rate of-turn regulator E.g. trackpilot (track-keeping system for inland vessels along pre-defined guiding lines)				
	2	PARTIAL AUTOMATION the context-specific performance by a navigation automation system of <u>both steering and</u> propulsion using certain information about the navigational environment and with the expectation that the human boatmaster performs all remaining aspects of the dynamic navigation tasks	<u>0</u>	<u>0 🚖</u>		
SYSTEM PERFORMS THE ENTIRE DYNAMIC NAVIGATION TASKS (WHEN ENGAGED)	3	CONDITIONAL AUTOMATION the <u>sustained</u> context-specific performance by a navigation automation system of <u>all</u> dynamic navigation tasks, <u>including collision avoidance</u> , with the expectation that the human boatmaster will be receptive to requests to intervene and to system failures and will respond appropriately			<u>0</u>	
	4	HIGH AUTOMATION the sustained context-specific performance by a navigation automation system of all dynamic navigation tasks and fallback performance, without expecting a human, boatmaster responding to a request to intervene? E.g. vessel operating on a canal section between two successive locks (environment well hown), but the automation system is not able to manage alone the passage through the lock (requiring human intervention)				
	5	AUTONOMOUS = FULL AUTOMATION the sustained and <u>unconditional</u> performance by a navigation automation system of all dynamic navigation tasks and fallback performance, without expecting a human humander organization as an uncert to interesting				

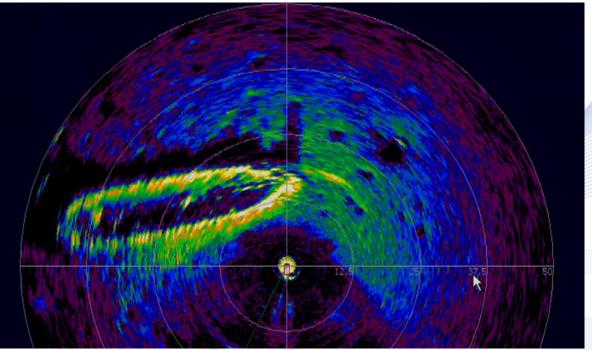
- The lack of data transmission places strong AUV autonomy requirements.
- Autonomous underwater systems should be able to interpret sensor data and to take decisions accordingly, eventually having a human as a supervisor.

AUV technologies

- AUV Sensing and Imaging
 - Sonar Imaging
 - Multibeam Echo Sounders
 - Sub-bottom Profilers
 - Optical imaging
- AUV Communication
 - Acoustic Communication
 - Electromagnetic Communication

AUV technologies

- AUV Navigation
 - Compass-based Navigation Solutions
 - Inertial Navigation Systems
- Collision Avoidance
 - Sonars
- AUV Propulsion
 - Fin Control Actuators
 - Propulsion Motors
 - Pump Motors


AUV sensors

Hydroacoustics:

- Acoustic Beacons and Modems
- Acoustic Doppler Current Profiler (ADCP)
 - Doppler Velocity Log (DVL)
- Sonar
 - Imaging
 - Ranging / Bathymetric
 - Synthetic Aperture Sonars
- Echo Sounders

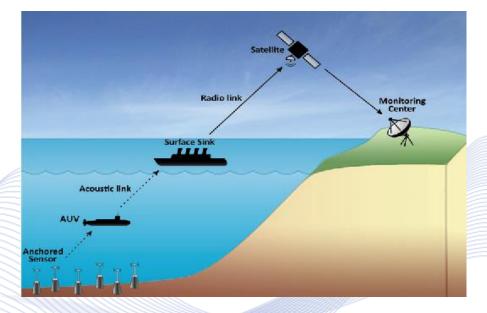
Artificial Intelligence & Information Analysis Lab

Acoustic Doppler Current Profilers

Shipwreck images by ROV Little Hercules' scanning sonar (2012), NOAA Okeanos Explorer Program [NOA].

AUV sensors

- Optical Sensors
 - High resolution still/video Cameras
 - Dual-eye cameras
 - Led Beacons
 - Gated viewing
- Sensors
 - Conductivity, Temperature, and Depth (CTD) Sensors
 - Biochemical Sensors
 - Turbulence sensors
 - Oxygen, Nitrate, Chlorophyll sensors.



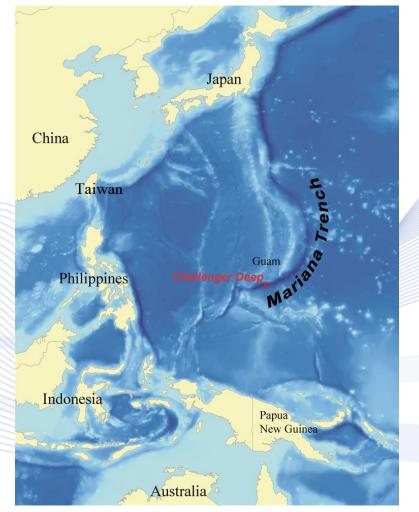
AUV communications

- Above water surface, WLAN and radio communications ensure efficient data communication between vessels and the shore, with small delays and losses.
- Underwater communications work very differently:
 - Water, especially sea water, which has much higher electrical conductivity than air and causes strong electromagnetic wave attenuation.

AUV communications

- Acoustic waves, on the other hand, propagate efficiently underwater. Acoustic modems use this principle to send and receive signals underwater.
 - Underwater modems include electro-acoustic transducers to receive and transmit sound signals in the water by converting electrical energy into acoustic energy (transmitting transducers) and/or acoustic energy into electrical energy (hydrophones).

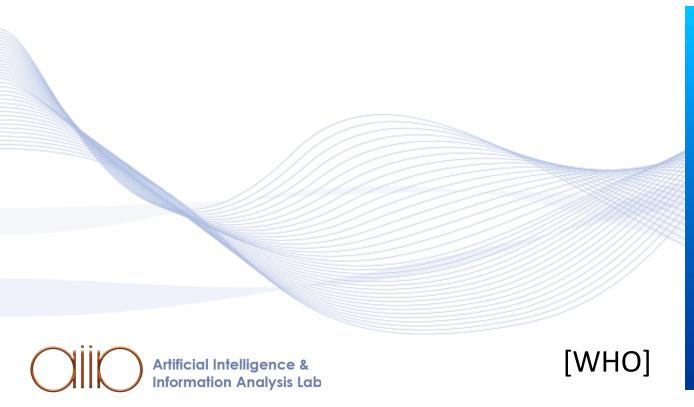
Ocean Exploration:


Artificial Intelligence &

nformation Analysis Lab

- Ocean floor is mapped at a much lower resolution (5 Km) than the Moon (7m), or other planets.
- Ocean floor mapping requires measuring gravity anomalies and using sonar at floor proximity.
- Marianas Trench has maximum depth 10,994 m.

[Wikipedia]



24

 HROV Nereus is the first autonomous vehicle (hybrid remotely operated vehicle, HROV) to reach the bottom of the Marianas Trench (2009).

[OCE]

Ocean observation:

- Marine life
 - Habitat Research
 - Fishery Study
- Coral reefs
- Deep sea bottom
- Polar ocean observation
- Water Sampling.

- Defense
 - Underwater border Surveillance
 - Antisubmarine Warfare
 - Mine operations, detection and countermeasures
- Underwater oil exploration
 - Pipeline Surveillance
 - Environmental studies

- Environment monitoring
 - Water polution
 - Sea floor pollution
- Underwater Archeology
 - Ship wreck imaging
 - Sunk cities
- Underwater filming.
- Search & Salvage.

Artificial Intelligence &

nformation Analysis Lab

Bibliography

[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.

[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).

[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.
[NIK2000] N. Nikolaidis and I. Pitas, 3D Image Processing Algorithms, J. Wiley, 2000.
[PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

Bibliography

[WHO] <u>https://web.whoi.edu/hades/nereus</u> [OCE] <u>https://oceanservice.noaa.gov</u>

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

