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Introduction C\ZML

Vehicle models depending on their dynamics can be classified into
three major categories that we will develop below:

 Dynamic Models
« Kinematic Models
« Point — Mass Models
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Introduction C\ZML

 Dynamic Models

These models essentially describe the relationship that the vehicle has
with the road. The complexity of these models results from the non -
linearity of the relationships between the tires and the other parts of
the vehicle.
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Introduction C\ZML

« Kinematic Models

These models consist a structure of equations that describe the
geometry of the vehicle, representing the behavior of the vehiclein
motion and during maneuvers.
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Dynamic Models C\ZML

{0 describe the car dynamics will be used three different frames:

* Inertial Frame: it is described as (ey, ey, e;)
* Vehicle Frame: it is described as (e,, ey, e;)

. Pneumatic or Tire Frame: it is described as (p,;, Py, p;;) Where
the i is associated with the wheel of the vehicle i = 1, ..., 4
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Dynamic Models C\ZML
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Car — Body Dynamics C\ZML

« The slow dynamics, incluse six different variables, namely the
longitudinal V., lateral V,, and vertical V, velocities and the roll 6,

pitch ¢ and yaw 1y angular velocities.

. The model inputs are the longitudinal and lateral forces F,; and F,;

applied by the road on the different wheels i in the vehicle frame (or
equivalently F,,,; and F,,; in the pneumatic frame). This concept

shown in Figure 3.
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Car — Body Dynamics C\ZML

In the following Figure we see the Dynamics of a car which moves
in a hill. We must describe the F,.,.,, which consist the air force
that hits the car.

Px |

Figure 4: Applied Forces in a car [POL18].
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Car — Body Dynamics C\ZML

Here we will describe the four-wheel vehicle model dynamics.
Compared to the dynamic bicycle model, the slope and road-bank
angle are defined, as well as the roll, pitch and vertical motions.
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Car — Body Dynamics

The suspension force variation F; | f ]
applied at wheel i depends on the
variation of the length of the suspension
Azg1 = Zgi — Zy;-

The normal reaction F,; force applied by ¢
the road on wheel i Is given by the
following Equations. The P. is the weight

of the wheel as shown in Figure 6.

Figure 6: The Wheel Dynamics.
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Tire Dynamics C\ZML

The longitudinal F,., and lateral F,, O
forces of tires are not given directly P

from the driver. \ /J;;j

| ipo j(KI{IF W, 10 T\@.

Rood curvalure

That is why we must describe the
steering wheel actions. The tire forces
generated by the gas pedal and the
brake pedal.

hnamic | CERler

cenler

Figure 7:-Dynamics of an understeer vehicle
[MKT19].
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Tire Dynamics C\ZML

The longitudinal F,., and lateral F,, forces generated by the road

on each tire expressed in the pneumatic frame are obtained from
the following four variables:

. The longitudinal slip ratio: T,

* The lateral slip angle: a

 The normal reaction force of the road on the wheel. E,
* The road friction coefficient: u
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O”lemf AIy Lb 17



Tire Dynamics C\ZML
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Figure 8: The main concept of the tire dynamics.

The Tire model can be expressed from the following Equations:
Fxp = fx(tx, @, F;, 1)

= frla, Ty, F;, 1)
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Tire Dynamics C\ZML

The first Equation refers to the Traction phase while the second
Equation refers to the Braking phase.

TefrWi — pri

Toprwi = Vo
refflwil ef fYi xXpi

Feff@Wi — pri

pri

Figure 9: Forces on the Tire Dynamic Model
[POL18].
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Tire Dynamics

Now, we must describe the
lateral slip angle a;

It 1s the wheel's orientation
vector i and the velocity vector
of the same wheel as shown in
Figure 10.

Figure 10: Later slip angle on the Tire Dynamic Model
[POL18].

l | | Artificial Intelligence & 20
Information Analysis Lab



Tire Dynamics C\ZML

The first Equation refers to the front wheels while the second
Equation refers to the rear wheels.

a; = O — atan
LT (Vx+elwy E,
V., + L. 9y
a; = —atan( e y,)
V. +€l,y

Figure 11: The Friction circle.
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Tire Dynamics C\ZML

10 DoF

b - - - - -

Finally, the combination of the f
ks LJ dg principles of the car - body
dynamics with a tire model we get
a 10 Degrees of Freedom vehicle

model (10 DoF).

Figure 12: The proposed model vehicle model
[POL18].
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Kinematic Models C\ZML

The Equations for this model are simpler. The kinematic vehicle
model assumes that no slip occurs between the ground and the
wheels, which is accurate for vehicles moving at low speeds.

In this case, the velocity directions at points F and R (Vz and V/y) are
consistent with the directions of the front and rear wheels
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Kinematic Models
X =V cos( + B)
Y =V, sin(y + )

) = Vg cos(B) tan(8) /(Iy + 1)

VG=C(

B = tan™1( s tan(s))
lr + 1,
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Figure 13: Diagram of the four wheel Kinematic model

[MWCZ19].
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Bicycle — Car Kinematic Model C\ZML

Because the bicycle model is often mentioned in the literature,
efforts have been made to form the basis for the study and
development of corresponding car models.

In.the picture below we see how a bicycle model can be adapted to
a kinematic vehicle model with four wheels.
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Bicycle — Car Kinematic Model
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Point — Mass Models C\ZML

As we described Iin the Introduction the Point - Mass models are
the simplest models of a vehicle.

The latter is assimilated to a point - mass where the conftrol inputs
are good enough for a second order point - mass model. The
accelerations in the inertial frame are the ay and ay.
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Point — Mass Models C\ZML

The most important is that the system obtained is a linear one.

épm - Agpm T BUpm

The second order point - mass model can described from p,, =
(X,X,Y, Y)Twhich is the state of the vehicle and U,,, = (X,Y )T which
IS the control input. The A and B are diagonal 4 x4 and 2 X2
matrices, respectively. The variables X and Y describe the positions

of the vehicle in the inertial frame while the X and Y describe the
speed of the vehicle in the inertial frame.
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Point — Mass Models C\ZML

As shown In Figure 15 the vehicle can move in many directions,
this idea makes the model week and poor in accuracy. If we want
to avoid pure lateral motion, we assume the following Equation.

V| < k|X|
where,

0 < tan(P,,qy) < 1

| | Artificial Intelligence &
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Figure 15: The proposed Point - Mass
model [POL18]
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Autonomous Vehicle Control C\ZML

In order to execute the reference path or trajectory from the motion
planning system a feedback controller is used to select appropriate
actuator inputs to carry out the planned motion and correct tracking

errors.

The tracking errors generated during the execution of a planned
motion are due in part to the inaccuracies of the vehicle model.
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Model Predictive Control Law C\ZML

The Model Predictive Control (MPC) model consist of a general
and common methodology for autonomous vehicles control. The
MPC method solves the motion planning problem over a short time
horizon, by taking a short interval of the resulting open loop control
and apply it to the system.

The model takes the form of a general continuous time control
system with control, u(t) € R™ and the state, x(t) € R".
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Pure Pursuit Control Law C\ZML

The pure pursuit is a lateral control strategy. In this control law, a goal
point is defined on the desired path, by looking ahead distance [; from
the current position of the rear axle center O to the desired path.

Then the curvature of the arc that connects O to the goal point is
calculated geometrically.
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Pure Pursuit Control Law C\ZML

The required steering angle is calculated from the following Equation.

L, R I

; 2 = = 2R
sin(2a) sin(% — a)

sin(a)

Figure 16: The concept of the Pure Pursuit Law [DAGM16].
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Stanley Control Law C\ZML

This Law was first introduced in Stanford University and won the DARPA
Grand Challenge.

f (t)

¢ (t) = 6,(t) + tan

path-"

Figure 17: The Stanley Control Law
[DAGM16].
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Modified Sliding Control Law (VML

The sliding mode is a robust control model and does not require a
precise model of the system and can also ensure stability. The sliding
surface can be defined as following:

ll) — kgpgp + kddr

where the k,and k; are weighting coefficients. The sliding mode
controller assumes that:

Y = —Kysign(y)
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Kinematic Lateral Speed
VML
Control Law C

The new kinematic lateral speed control designed to control the rear
lateral distance and the orientation error by controlling the Ilateral

speed d,., which in turn is controlled by the angular speed of the car 6
through the steering angle ¢.

As the lateral speed d.. is under control, the motions toward the path
are smoother, after tuning the parameters.

Attificial Intelligen
Ollolfmi AIy Lb 45



Kinematic Lateral Speed
VML
Control Law C

If the car is far away from the road line, it must get closer at higher

speed than if it is near, so the desired lateral speed d, can be defined
as proportional to the lateral error d,., with negative sign.

Pl
-

dr = —Kiqed;

The absolute value of the desired lateral speed is limited to a
reasonable maximum value, which in our case is 1 m/s.
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Kinematic Lateral Speed
VML
Control Law C

The derivative of the lateral speed of the rear axle d, is defined from
the following Equation:

d, = v, sin(6,)

Figure 18: The Kinematic Lateral Control

Law [DAGM16].
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Deep Autonomous Vehicle
VML
Control C

Deep Learning models contribute to perception and to the
processing of the sensory data in order to make informed decisions.
The popular deep learning models used In autonomous car

technology include:

. End — to end Learning CNN and Deep CNN
. Fully Convolutional Network Deep Boltzmann Machines
. Deep Reinforcement Learning Deep Autoencoders
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Deep Autonomous Vehicle
VML
Control C
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Figure 19: Block diagram of and Al powered Autonomous Car.
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Deep Autonomous Vehicle VIVIL

Control

The DNN takes as inputs the
iInformation coming from Cameras,
LIDAR and IR Sensors.

The outputs are Important
information for the control of the
autonomous system and concern
the Steering angle, Brake and
Acceleration.

l | | Artificial Intelligence &
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Figure 20:-A simple autonomous car DNN [TPJR18].
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Deep Autonomous Vehicle
VML
Control C
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[TPJIR18]. ) —_e.

Figure 22: Nvidia proposed CNN architecture for

Y, Deep Autonomous Control.
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Deep Autonomous Vehicle

Control

The unrolled version on the right of
Figure shows how the loop allows
a sequence of Inputs (Iimages) to
be fed to the RNN and the steering
angle I1s predicted based on all

those Images. Specifical
output. of each layer iIs fec
following layer and flow bac
previous layer.
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Figure 23:-RNN architecture with loops for
Autonomous Driving [TPJR18].
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Q& A

Thank you very much for your attention!

More material In |
http:/licarus.csd.auth.gr/cvmisweb-lecture-series/ /
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