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Why choose Graphs

« Graphs:

represent a data structure,

are more than data structures,

In several applications are an inherent part of the system,
are models of physical systems with multiple agents:

« Decentralized Control of Autonomous Systems,

* Wireless Communication Networks.

are usually the source of the problem.
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« The challenge is that goals are global whereas information is local.
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Graph Basics

Graph definition: G(V, £, W)
V: set of nodes,

E: set of edges,

W: set of edge weights.
N: number of nodes

E: number of edges

Graph types:
« Directed / Undirected or Symmetric,
« Weighted / Unweighted.
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Graph Basics @ML

 Neighborhood »; of node i =1,...,N, Is the set of nodes j that are connected
to i:

Ny ={4:()) € €}

« Degree of node i: sum of weights of Iz;s Incident edges.
2
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Graph Matrix Representations @ML

Linear algebra graph descriptors:

- D e RV*N : Degree matrix, describes the #edges connected to each node.
- A e RV*N : Adjacency matrix, describes the connectivity of the graph.
« L e RV*N: Laplacian matrix, of a (sub-)graph consisting of N nodes:

L=D-A.
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Graph Matrix Representations
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Graph Matrix Representations
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Graph Matrix Representations
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Graph Matrix Representations @ML
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Graph Matrix Representations @ML

Graph-Shift Operator (GSO):

S € RVXN, S;j # 0if i = jand/or (i,j) € €.
* It enables matrix representations of graphs.
|t captures the local graph structure.

 If the graph is symmetric, S is also symmetric.
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Graph Matrix Representations @ML

« Various algebraic choices of S:
« Adjacency matrix: S = A,
« Graph Laplacian matrix (Directed Graphs):

S=L;, = DinN_ A, S =Loy: = Dout —A

[Din]ii = Z Aji ) out Z Al]
j=1
» Symmetric Graph Laplacian (Undirected Graphs).
S=L=D-A D=D;;, = Doyt

 The choice matters in practice, however the analysis results hold for any
selection.
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Graph Fourier-like Basis @ML

Eigen-decomposition of GSO:
S = UAUT,

U= [ul, ...,uN] (S IRNXN,
A= diag(ﬂ]_, ...,AN) (S RNXN.

* Holds for Adjacency and Graph Laplacian matrices.
« Holds for undirected graphs (real-valued U and A).
» Holds for directed graphs, if S normal (U and A complex conjugate pairs).
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Graph Fourier-like Basis @ML

Eigen-decomposition of GSO:
S = UAUT,

U= [ul, ...,uN] (S IRNXN,
A= diag(ﬂ]_, ...,AN) (S RNXN.

« Eigen-pair system {(4;,u;)}, fori = 1,2, ..., N: Fourier-like interpretation.
* uy,..,uy € RY: Eigenvectors — Graph Fourier modes.
« 14, .., Ay € R¥: Eigenvalues — Graph Spectral Frequencies.
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Building Blocks of Graphs @ML

 Motifs:

 Appear more frequently that random, as small induced overlapping
subgraphs,

 Characterize the whole network structure.
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Building Blocks of Graphs @ML

« Motifs: Random Graph G’ with a given degree sequence

/

 Appear more frequently that random, as small induced overlapping
subgraphs,

 Characterize the whole network structure.
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Building Blocks of Graphs @ML

* Motifs: Take all the edges between the nodes
.
 Appear more frequently that random, as small induced overlapping
subgraphs,

 Characterize the whole network structure.

| | Artificial Intelligence & 17
Information Analysis Lab



Building Blocks of Graphs @ML

 Motifs:

 Appear more frequently that random, as small induced overlapping
subgraphs,

how it works
 Characterize the whole network structure. \h it will t
ow It will reac
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Building Blocks of Graphs @ML

« Graph:

« Motif of interest: Q-—E:Z,

« We observe 4 occurrences of this motif.
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Building Blocks of Graphs

 Network Significance Profile (SP):
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Building Blocks of Graphs @ML

« Graphlets (generalization of motifs):
« Connected non-isomorphic subgraphs rooted at any node.

« Characterize network structure around a node (neighborhood).
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Building Blocks of Graphs Yk

« Graphlets:
« For N =3,4,5,..,10 there are 2,6,21,...,11716571 graphlets.
* Induced subgraphs of any frequency:

2-node 3-node graphlets 4-node graphlets
graphlet ]
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Building Blocks of Graphs @ML

INPUT OUTPUT
« Automatic discovery of Roles: | ~
* RolX algorithm [HEND2012] /’P‘J/if\@\ ﬂ;_’/ :\T\
* Unsupervised learning. T OO O @ O~
» No prior knowledge. fof M RS
« Mixed-membership of roles to each node:
- Role discovery, [Node;Nod%_ R;g;tfj;;e j\lo?neatrpifatf
« How to assign nodes to those roles. NPUT - LExtraction | L |
» Scales linearly (#edges). Role
Extraction
=

™y '
NodexRole RolexFeat.
OUTPUT matrix | | matrix
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Community detection @ML

« Communities:
« Group of nodes with many internal connections and a few external ones.

* Modularity Q:
« Metric of how well-partitioned into communities a network is.
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Community detection @ML

* Discover Communities by maximizing Modularity:
« Louvain algorithm:
« Greedy algorithm.
* O(nlogn) run time — fast convergence.
e Supports weighted Graphs.
* Provides hierarchical Communities.
« High Modularity output.

Graph and Communities

Dendrogram
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Community detection @ML

« Discover overlapping Communities:
« Community Affiliation Graph Model (AGM):
« Assume that the real Graph G is generated by AGM.
« Fit model parameters that generate G.
« The parameters will reveal which nodes belong to which Communities.
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Community detection @ML

« Discover overlapping Communities:
« Community Affiliation Graph Model (AGM):
« Assume that the real Graph G is generated by AGM.
« Fit model parameters that generate G.
« The parameters will reveal which nodes belong to which Communities.

Model Graph
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Graph Clustering @ML

« Graph Partitioning:
* Modularity — random model comparison (physics view of networks).
« Conductance — optimization (computer science view of networks).
« Approximation guarantees on how well the methods work.

« Goal:
1. Maximize the # within-group connections, |
2. Minimize the # between-group connections. O o O
\ / N/
O
A + B
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Graph Clustering — Spatial domain @ML

* Notion of a Cut:
€A ,jEB
« A cV,B c V: subsets of the graph node set V.
« Danger of finding the minimum and not the optimal cut:

Optimal cut
_ o x ,” (sl L’/{_)
C R/Q ;} N f&y@’;’
5 A
A B Minimum cut
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Graph Clustering — Spectral domain@ML

* D-reqgular Graphs:
« Graph with multiple connected components:

« Multiplicity of the largest eigenvalue (how many different eigenvectors
correspond to that eigenvalue) reveals how many connected components
there are.

« Disconnected Graph of two components:
 largest eigenvalue = second largest eigenvalue.

() (2
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Graph Clustering — Spectral domain@ML

* D-reqgular Graphs:
« Almost disconnected Graph:
 largest eigenvalue = second largest eigenvalue.
« Second largest eigenvalue = what node should be in what Graph component:
 Largest eigenvector: uy = [1,...,1].
« Orthogonality constraint = Second eigenvector's (uy_,;) components must
sum to 0.

uy_; Splits the nodes into two groups (some values positive, some
negative).
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Graph Clustering versus C\ZML
Community detection

 Graph clustering and community detection share many commonalities
[COSCIA2011].

* There is a rough distinction between them:
« Clustering: Group sets of points based on their features.

« Community detection: Group sets of points based on their connectivity.

« Related paper [GUID2017].
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raph-based Clustering

Data graph visualization.
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a) Similarity graph; b) Similarity matrix.




9®

Graph-based Clustering

* Vertex degree: number of vertex connection in A.

« Gaussian kernel for edge weight calculation:

[Ix;—x ] |%
.. - 2 1 &F—
w@,j)={¢e 2 , 1 |x; JH<9'
0, otherwise.

e ¢:1S a user-defined constant.
|| . || is Euclidean norm.
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Graph-based Clustering @ML

Nearest neighbor graphs
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a) k-nearest neighbors graph; b) e-neighborhood graph.
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Graph-based Clustering @ML

Graph Clustering
» Cluster graph vertices (data vectors) into tightly linked clusters.

* Vertices of the same cluster are:
« Strongly connected to each other and
» sparsely connected to the rest of the graph.

 Intra-cluster connectivity: measured by the cluster density.
* Inter-cluster connectivity: measured by graph cut cardinality.
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Graph-based Clustering @ML

Laplacian matrix eigenanalysis:
* Non-decreasing eigenvalue order:
A <A, < - < A.

* Graph spectrum is the eigenvalue set: {4;, i =1,...,N}
* |tis invariant to graph isomorphism

* Graph vertex permutations.
* Non-isomorphic graphs can be co-spectral.
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Graph-based Clustering @ML

« Algebraic connectivity (eigenvalue A,):

¢ If /12 > 0:
* graph G Is connected.

¢ else:

» multiplicity of eigenvalue 0O is equal number of connected
graph components.
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Graph-based Clustering @ML

« Graph comprised of k disjoint cliques:
* k smallest eigenvalues of normalized Laplacian matrix are O.

 i-th corresponding eigenvector (0 <i < k — 1) has non-zero
values for vertices of the i —th clique.

* Adding edges cause the eigenvalues to increase and change
slightly corresponding eigenvectors.
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Graph-based Clustering @ML

Graph clustering based on spectral bisection:
e 2-way graph partitioning.

* |t uses the so-called Fiedler vector:
* _eigenvector u, corresponding to eigenvalue A, of Laplacian matrix.
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Graph-based Clustering

/\.

N-Cut Graph Clustering (2-way partitioning).
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Graph-based Clustering @ML

Edge-based bisection:
 Compute Fiedler vector.
» Split vertices into 2 groups:

* their relevant Fiedler vector entries are below/above the
Fledler vector entries median.

« Edges between these two groups are cut.
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Graph-based Clustering @ML

Vertex-based bisection:
 Compute Fiedler vector.
* Find the largest gap in Fiedler vector entries
» Split Fiedler vector entries accordingly.
« Split the graph at the cut provides the best cut quotient.
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Graph-based Clustering @ML

Spectral graph clustering:

 Perform eigenanalysis on one of the normalized
Laplacians.

« Extract r eigenvectors corresponding to the smallest
eigenvalues excluding A;.

« Store eigenvectors in a N X r matrix U.
* |ts rows are the new data representation.
» Use any standard clustering algorithm to cluster them.
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Graph-based Clustering @ML

Graph-based clustering properties:

* Little user input is needed.

 Trivial clusters easily avoided.

* Unlikely to get bad clustering results.

* They cannot be employed in extremely large graphs:
* Memory limitations.

« Eigenanalysis has O(N?) computational complexity.
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Q& A

Thank you very much for your attention!

More material in
http://icarus.csd.auth.gr/cvmlsweb-lecture-series/ /

Contact: Prof. |. Pitas ——
pitas@csd.auth.gr
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