# Algebraic Graph Analysis summary 

N. Kilis, Prof. Ioannis Pitas, Aristotle University of Thessaloniki pitas@csd.auth.gr
www.aiia.csd.auth.gr
Version 3.5.1

## Outline

- Why choose Graphs
- Graph Basics
- Graph Matrix Representations
- Graph-shift Operator (GSO)
- Eigen-decomposition of GSO
- Graph Building Blocks
- Community detection
- Graph Clustering
- Spatial domain
- Spectral domain


## Why choose Graphs

- Graphs:
- represent a data structure,
- are more than data structures,
- in several applications are an inherent part of the system,
- are models of physical systems with multiple agents:
- Decentralized Control of Autonomous Systems,
- Wireless Communication Networks.
- are usually the source of the problem.
- The challenge is that goals are global whereas information is local.


## Graph Basics

Graph definition: $\mathcal{G}(\mathcal{V}, \mathcal{E}, \mathcal{W})$

- $\mathcal{V}$ : set of nodes,
- $\mathcal{E}$ : set of edges,
- $\mathcal{W}$ : set of edge weights.
- $N$ : number of nodes
- $E$ : number of edges



## Graph types:

- Directed / Undirected or Symmetric,
- Weighted / Unweighted.


## Graph Basics

- Neighborhood $\mathcal{N}_{i}$ of node $i=1, \ldots, N$, is the set of nodes $j$ that are connected to $i$ :

$$
\mathcal{N}_{i}=\{j:(i, j) \in \mathcal{E}\}
$$

- Degree of node $i$ : sum of weights of $i$ 's incident edges.



## Graph Matrix Representations

Linear algebra graph descriptors:

- $\mathbf{D} \in \mathbb{R}^{N \times N}:$ Degree matrix, describes the \#edges connected to each node.
- $\mathbf{A} \in \mathbb{R}^{N \times N}$ : Adjacency matrix, describes the connectivity of the graph.
- $\mathbf{L} \in \mathbb{R}^{N \times N}$ : Laplacian matrix, of a (sub-)graph consisting of $N$ nodes:

$$
\mathbf{L}=\mathbf{D}-\mathbf{A} .
$$

## Graph Matrix Representations


$V_{3}$

## Graph Matrix Representations

$$
\mathbf{A}=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$


$V_{3}$

## Graph Matrix Representations



## Graph Matrix Representations



$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right] \\
& \mathbf{D}=\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 2
\end{array}\right] \\
& \mathbf{L}=\mathbf{D}-\mathbf{A}=\left[\begin{array}{cccc}
2 & -1 & -1 & 0 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 3 & -1 \\
0 & -1 & -1 & 2
\end{array}\right]
\end{aligned}
$$

## Graph Matrix Representations

## Graph-Shift Operator (GSO):

$$
\mathbf{S} \in \mathbb{R}^{N \times N}, \quad S_{i j} \neq 0 \text { if } i=j \text { and/or }(i, j) \in \mathcal{E} .
$$

- It enables matrix representations of graphs.
- It captures the local graph structure.
- If the graph is symmetric, $\mathbf{S}$ is also symmetric.


## Graph Matrix Representations

- Various algebraic choices of $\mathbf{S}$ :
- Adjacency matrix: $\mathbf{S}=\mathbf{A}$,
- Graph Laplacian matrix (Directed Graphs):

$$
\begin{aligned}
\mathbf{S}=\mathbf{L}_{\text {in }}=\mathbf{D}_{\text {in }}-\mathbf{A}, & \mathbf{S}=\mathbf{L}_{\text {out }}=\mathbf{D}_{\text {out }}-\mathbf{A} \\
{\left[\mathbf{D}_{\text {in }}\right]_{i i}=\sum_{j=1}^{N} \mathbf{A}_{j i}, } & {\left[\mathbf{D}_{\text {out }}\right]_{i i}=\sum_{j=1}^{N} \mathbf{A}_{i j} }
\end{aligned}
$$

Symmetric Graph Laplacian (Undirected Graphs):

$$
\mathbf{S}=\mathbf{L}=\mathbf{D}-\mathbf{A}, \quad \mathbf{D}=\mathbf{D}_{\text {in }}=\mathbf{D}_{\text {out }}
$$

- The choice matters in practice, however the analysis results hold for any selection.


## Graph Fourier-like Basis

Eigen-decomposition of GSO:

$$
\begin{gathered}
\mathbf{S}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T}, \\
\mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{N}\right] \in \mathbb{R}^{N \times N}, \\
\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{R}^{N \times N} .
\end{gathered}
$$

- Holds for Adjacency and Graph Laplacian matrices.
- Holds for undirected graphs (real-valued $\mathbf{U}$ and $\Lambda$ ).
- Holds for directed graphs, if $\mathbf{S}$ normal ( $\mathbf{U}$ and $\boldsymbol{\Lambda}$ complex conjugate pairs).


## Graph Fourier-like Basis

Eigen-decomposition of GSO:

$$
\begin{gathered}
\mathbf{S}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T}, \\
\mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{N}\right] \in \mathbb{R}^{N \times N}, \\
\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right) \in \mathbb{R}^{N \times N} .
\end{gathered}
$$

- Eigen-pair system $\left\{\left(\lambda_{i}, \mathbf{u}_{i}\right)\right\}$, for $i=1,2, \ldots, N$ : Fourier-like interpretation.
- $\mathbf{u}_{1}, \ldots, \mathbf{u}_{N} \in \mathbb{R}^{N}$. Eigenvectors $\rightarrow$ Graph Fourier modes.
- $\lambda_{1}, \ldots, \lambda_{N} \in \mathbb{R}^{N}$ : Eigenvalues $\rightarrow$ Graph Spectral Frequencies.


## Building Blocks of Graphs

- Motifs:
- Appear more frequently that random, as small induced overlapping subgraphs,
- Characterize the whole network structure.


## Building Blocks of Graphs

Random Graph $\mathcal{G}^{\prime}$ with a given degree sequence

- Appear more frequently that random, as small induced overlapping subgraphs,
- Characterize the whole network structure.


## Building Blocks of Graphs

- Motifs:

Take all the edges between the nodes

- Appear more frequently that random, as small induced overlapping subgraphs,
- Characterize the whole network structure.


## Building Blocks of Graphs

- Motifs:
- Appear more frequently that random, as small induced overlapping subgraphs,
- Characterize the whole network structure.


## Building Blocks of Graphs

- Graph:

- Motif of interest:

- We observe 4 occurrences of this motif.


## Building Blocks of Graphs

- Network Significance Profile (SP):

2
- Image source [LIN2008].


## Building Blocks of Graphs

- Graphlets (generalization of motifs):
- Connected non-isomorphic subgraphs rooted at any node.
- Characterize network structure around a node (neighborhood).


## Building Blocks of Graphs

- Graphlets:
- For $N=3,4,5, \ldots, 10$ there are $2,6,21, \ldots, 11716571$ graphlets.
- Induced subgraphs of any frequency:

- Image source [PRZULJ2004].


## Building Blocks of Graphs

- Automatic discovery of Roles:
- RoIX algorithm [HEND2012]
- Unsupervised learning.
- No prior knowledge.
- Mixed-membership of roles to each node:
- Role discovery,
- How to assign nodes to those roles.
- Scales linearly (\#edges).
INPUT
OUTPUT

$\left.$| Node $\times$ Node <br> $\mathbf{A}$ <br> INPUT | Recursive <br> Feature <br> Extraction |
| :---: | :---: |$\rightarrow$| NodexFeat. |
| :---: |
| matrix | \right\rvert\,

## Community detection

- Communities:
- Group of nodes with many internal connections and a few external ones.
- Modularity Q:
- Metric of how well-partitioned into communities a network is.


## Community detection

- Discover Communities by maximizing Modularity:

Graph and Communities

- Louvain algorithm:
- Greedy algorithm.
- O(nlogn) run time - fast convergence.
- Supports weighted Graphs.
- Provides hierarchical Communities.
- High Modularity output.


Dendrogram

## Community detection

- Discover overlapping Communities:
- Community Affiliation Graph Model (AGM):
- Assume that the real Graph $\mathcal{G}$ is generated by AGM.
- Fit model parameters that generate $\mathcal{G}$.
- The parameters will reveal which nodes belong to which Communities.


## Community detection

- Discover overlapping Communities:
- Community Affiliation Graph Model (AGM):
- Assume that the real Graph $\mathcal{G}$ is generated by AGM.
- Fit model parameters that generate $\mathcal{G}$.
- The parameters will reveal which nodes belong to which Communities.



## Graph Clustering

- Graph Partitioning:
- Modularity $\rightarrow$ random model comparison (physics view of networks).
- Conductance $\rightarrow$ optimization (computer science view of networks).
- Approximation guarantees on how well the methods work.
- Goal:

1. Maximize the \# within-group connections,
2. Minimize the \# between-group connections.


## Graph Clustering - Spatial domain

- Notion of a Cut:

$$
\operatorname{CUT}(\mathcal{A}, \mathcal{B})=\sum_{i \in \mathcal{A}, j \in \mathcal{B}} W_{i j}
$$

- $\mathcal{A} \subset \mathcal{V}, \mathcal{B} \subset \mathcal{V}$ : subsets of the graph node set $\mathcal{V}$.
- Danger of finding the minimum and not the optimal cut:



## Graph Clustering - Spectral domain

- D-regular Graphs:
- Graph with multiple connected components:
- Multiplicity of the largest eigenvalue (how many different eigenvectors correspond to that eigenvalue) reveals how many connected components there are.
- Disconnected Graph of two components:
- largest eigenvalue = second largest eigenvalue.



## Graph Clustering - Spectral domain

- D-regular Graphs:
- Almost disconnected Graph:
- largest eigenvalue $\approx$ second largest eigenvalue.
- Second largest eigenvalue $\Rightarrow$ what node should be in what Graph component:
- Largest eigenvector: $\mathbf{u}_{N}=[1, \ldots, 1]^{T}$.
- Orthogonality constraint $\Rightarrow$ Second eigenvector's $\left(\mathbf{u}_{N-1}\right)$ components must sum to 0 .
- $\mathbf{u}_{N-1}$ splits the nodes into two groups (some values positive, some negative).


$$
\lambda_{N}-\lambda_{N-1} \approx 0
$$

## Graph Clustering versus Community detection

- Graph clustering and community detection share many commonalities [COSCIA2011].
- There is a rough distinction between them:
- Clustering: Group sets of points based on their features.
- Community detection: Group sets of points based on their connectivity.
- Related paper [GUID2017].


## Graph-based Clustering



Data graph visualization.

## Graph-based Clustering



| 1 | 0.9 | 0.8 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.9 | 1 | 0.7 | 0 | 0 | 0 |
| 0.8 | 0.7 | 1 | 0.5 | 0 | 0 |
| 0 | 0 | 0.5 | 1 | 0.8 | 0.7 |
| 0 | 0 | 0 | 0.8 | 1 | 0.7 |
| 0 | 0 | 0 | 0.7 | 0.7 | 1 |

a) Similarity graph; b) Similarity matrix.

## Graph-based Clustering

- Vertex degree: number of vertex connection in A.
- Gaussian kernel for edge weight calculation:

$$
W(i, j)=\left\{\begin{array}{cc}
e^{-\frac{\left\|x_{i}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}}, & \text { if }| | \mathbf{x}_{i}-\mathbf{x}_{j}| |<e, \\
0, & \text { otherwise. }
\end{array}\right.
$$

- $e$ : is a user-defined constant.
- || . || is Euclidean norm.


## Graph-based Clustering

## Nearest neighbor graphs



## Graph-based Clustering

## Graph Clustering

- Cluster graph vertices (data vectors) into tightly linked clusters.
- Vertices of the same cluster are:
- Strongly connected to each other and
- sparsely connected to the rest of the graph.
- Intra-cluster connectivity: measured by the cluster density.
- Inter-cluster connectivity: measured by graph cut cardinality.


## Graph-based Clustering

## Laplacian matrix eigenanalysis:

- Non-decreasing eigenvalue order:

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{N} .
$$

- Graph spectrum is the eigenvalue set: $\left\{\lambda_{i}, \quad i=1, \ldots, N\right\}$
- It is invariant to graph isomorphism
- Graph vertex permutations.
- Non-isomorphic graphs can be co-spectral.


## Graph-based Clustering

- Algebraic connectivity (eigenvalue $\lambda_{2}$ ):
- If $\lambda_{2}>0$ :
- graph $\mathcal{G}$ is connected.
- else:
- multiplicity of eigenvalue 0 is equal number of connected graph components.


## Graph-based Clustering

- Graph comprised of $k$ disjoint cliques:
- $k$ smallest eigenvalues of normalized Laplacian matrix are 0.
- $i$-th corresponding eigenvector $(0 \leq i \leq k-1)$ has non-zero values for vertices of the $i$-th clique.
- Adding edges cause the eigenvalues to increase and change slightly corresponding eigenvectors.


## Graph-based Clustering

Graph clustering based on spectral bisection:

- 2-way graph partitioning.
- It uses the so-called Fiedler vector:
- eigenvector $\mathbf{u}_{2}$ corresponding to eigenvalue $\lambda_{2}$ of Laplacian matrix.


## Graph-based Clustering




N-Cut Graph Clustering (2-way partitioning).

## Graph-based Clustering

## Edge-based bisection:

- Compute Fiedler vector.
- Split vertices into 2 groups:
- their relevant Fiedler vector entries are below/above the Fiedler vector entries median.
- Edges between these two groups are cut.


## Graph-based Clustering

Vertex-based bisection:

- Compute Fiedler vector.
- Find the largest gap in Fiedler vector entries
- Split Fiedler vector entries accordingly.
- Split the graph at the cut provides the best cut quotient.


## Graph-based Clustering

## Spectral graph clustering:

- Perform eigenanalysis on one of the normalized Laplacians.
- Extract $r$ eigenvectors corresponding to the smallest eigenvalues excluding $\lambda_{1}$.
- Store eigenvectors in a $\mathrm{N} \times r$ matrix $\mathbf{U}$.
- Its rows are the new data representation.
- Use any standard clustering algorithm to cluster them.


## Graph-based Clustering

Graph-based clustering properties:

- Little user input is needed.
- Trivial clusters easily avoided.
- Unlikely to get bad clustering results.
- They cannot be employed in extremely large graphs:
- Memory limitations.
- Eigenanalysis has $0\left(N^{3}\right)$ computational complexity.


## Bibliography

[PIT2016] I. Pitas (editor), "Graph analysis in social media", CRC Press, 2016.
[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.
[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).
[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.
[NIK2000] N. Nikolaidis and I. Pitas, "3D Image Processing Algorithms", J. Wiley, 2000. [PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

## Q \& A

Thank you very much for your attention!
More material in
http://icarus.csd.auth.gr/cvml-web-lecture-series/

## Contact: Prof. I. Pitas pitas@csd.auth.gr

