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Why choose Graphs

• Graphs:

• represent a data structure,

• are more than data structures,

• in several applications are an inherent part of the system,

• are models of physical systems with multiple agents:

• Decentralized Control of Autonomous Systems,

• Wireless Communication Networks.

• are usually the source of the problem.

• The challenge is that goals are global whereas information is local.
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Graph Basics

Graph definition: 𝒢(𝒱, ℰ,𝒲)

• 𝒱: set of nodes,

• ℰ: set of edges,

• 𝒲: set of edge weights.

• 𝑁: number of nodes

• 𝐸: number of edges

Graph types:

• Directed / Undirected or Symmetric,

• Weighted / Unweighted.
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Graph Basics

• Neighborhood 𝒩𝑖 of node 𝑖 = 1,… ,𝑁, is the set of nodes 𝑗 that are connected

to 𝑖:

𝒩𝑖 = {𝑗: (𝑖, 𝑗) ∈ ℰ}

• Degree of node 𝑖: sum of weights of 𝑖’s incident edges.
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Graph Matrix Representations

Linear algebra graph descriptors:

• 𝐃 ∈ ℝ𝑁×𝑁 : Degree matrix, describes the #edges connected to each node.

• 𝐀 ∈ ℝ𝑁×𝑁 : Adjacency matrix, describes the connectivity of the graph.

• 𝐋 ∈ ℝ𝑁×𝑁 : Laplacian matrix, of a (sub-)graph consisting of 𝑁 nodes:

𝐋 = 𝐃 − 𝐀.
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Graph Matrix Representations
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Graph Matrix Representations
Graph-Shift Operator (GSO):

𝐒 ∈ ℝ𝑁×𝑁, 𝑆𝑖𝑗 ≠ 0 if 𝑖 = 𝑗 and/or (𝑖, 𝑗) ∈ ℰ.

• It enables matrix representations of graphs.

• It captures the local graph structure.

• If the graph is symmetric, 𝐒 is also symmetric.
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Graph Matrix Representations
• Various algebraic choices of 𝐒:

• Adjacency matrix: 𝐒 = 𝐀,

• Graph Laplacian matrix (Directed Graphs):

𝐒 = 𝐋𝑖𝑛 = 𝐃𝑖𝑛 − 𝐀, 𝐒 = 𝐋𝑜𝑢𝑡 = 𝐃𝑜𝑢𝑡 −𝐀

𝐃𝑖𝑛 𝑖𝑖 =

𝑗=1

𝑁

𝐀𝑗𝑖 , 𝐃𝑜𝑢𝑡 𝑖𝑖 =

𝑗=1

𝑁

𝐀𝑖𝑗

• Symmetric Graph Laplacian (Undirected Graphs):

𝐒 = 𝐋 = 𝐃 − 𝐀, 𝐃 = 𝐃𝑖𝑛 = 𝐃𝑜𝑢𝑡

• The choice matters in practice, however the analysis results hold for any

selection.
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Graph Fourier-like Basis
Eigen-decomposition of GSO:

𝐒 = 𝐔𝚲𝐔𝑇,

𝐔 = [𝐮1, … , 𝐮𝑁] ∈ ℝ𝑁×𝑁,

𝚲 = 𝑑𝑖𝑎𝑔 𝜆1, … , 𝜆𝑁 ∈ ℝ𝑁×𝑁.

• Holds for Adjacency and Graph Laplacian matrices.

• Holds for undirected graphs (real-valued 𝐔 and 𝚲).

• Holds for directed graphs, if 𝐒 normal (𝐔 and 𝚲 complex conjugate pairs).
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Graph Fourier-like Basis
Eigen-decomposition of GSO:

𝐒 = 𝐔𝚲𝐔𝑇,

𝐔 = [𝐮1, … , 𝐮𝑁] ∈ ℝ𝑁×𝑁,

𝚲 = 𝑑𝑖𝑎𝑔 𝜆1, … , 𝜆𝑁 ∈ ℝ𝑁×𝑁.

• Eigen-pair system {(𝜆𝑖 , 𝐮𝑖)}, for 𝑖 = 1,2,… ,𝑁: Fourier-like interpretation.

• 𝐮1, … , 𝐮𝑁 ∈ ℝ𝑁: Eigenvectors → Graph Fourier modes.

• 𝜆1, … , 𝜆𝑁 ∈ ℝ𝑁: Eigenvalues → Graph Spectral Frequencies.
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Building Blocks of Graphs
• Motifs:

• Appear more frequently that random, as small induced overlapping

subgraphs,

• Characterize the whole network structure.
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Building Blocks of Graphs
• Motifs:

• Appear more frequently that random, as small induced overlapping

subgraphs,

• Characterize the whole network structure.
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Building Blocks of Graphs
• Motifs:

• Appear more frequently that random, as small induced overlapping

subgraphs,

• Characterize the whole network structure.
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Building Blocks of Graphs
• Motifs:

• Appear more frequently that random, as small induced overlapping

subgraphs,

• Characterize the whole network structure.
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Building Blocks of Graphs
• Graph:

• Motif of interest:

• We observe 4 occurrences of this motif.
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Building Blocks of Graphs
• Network Significance Profile (SP):

• Image source [LIN2008].

20



Building Blocks of Graphs

• Graphlets (generalization of motifs):

• Connected non-isomorphic subgraphs rooted at any node.

• Characterize network structure around a node (neighborhood).
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Building Blocks of Graphs
• Graphlets:

• For 𝑁 = 3,4,5,… , 10 there are 2,6,21,… , 11716571 graphlets.

• Induced subgraphs of any frequency:

• Image source [PRZULJ2004].
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Building Blocks of Graphs
• Automatic discovery of Roles:

• RolX algorithm [HEND2012]

• Unsupervised learning.

• No prior knowledge.

• Mixed-membership of roles to each node:

• Role discovery,

• How to assign nodes to those roles.

• Scales linearly (#edges).
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Community detection

• Communities:

• Group of nodes with many internal connections and a few external ones.

• Modularity Q:

• Metric of how well-partitioned into communities a network is.
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Community detection
• Discover Communities by maximizing Modularity:

• Louvain algorithm:

• Greedy algorithm.

• 𝑂(𝑛𝑙𝑜𝑔𝑛) run time – fast convergence.

• Supports weighted Graphs.

• Provides hierarchical Communities.

• High Modularity output.
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Community detection
• Discover overlapping Communities:

• Community Affiliation Graph Model (AGM):

• Assume that the real Graph 𝒢 is generated by AGM.

• Fit model parameters that generate 𝒢.

• The parameters will reveal which nodes belong to which Communities.
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Community detection
• Discover overlapping Communities:

• Community Affiliation Graph Model (AGM):

• Assume that the real Graph 𝒢 is generated by AGM.

• Fit model parameters that generate 𝒢.

• The parameters will reveal which nodes belong to which Communities.

27

Model Graph



Graph Clustering
• Graph Partitioning:

• Modularity → random model comparison (physics view of networks).

• Conductance → optimization (computer science view of networks).

• Approximation guarantees on how well the methods work.

• Goal:

1. Maximize the # within-group connections,

2. Minimize the # between-group connections.
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• Notion of a Cut:

𝐶𝑈𝑇 𝒜 ,ℬ = 

𝑖∈𝒜 ,𝑗∈ℬ

𝑊𝑖𝑗

• 𝒜 ⊂ 𝒱,ℬ ⊂ 𝒱: subsets of the graph node set 𝒱.

• Danger of finding the minimum and not the optimal cut:
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Graph Clustering – Spectral domain
• D-regular Graphs:

• Graph with multiple connected components: 

• Multiplicity of the largest eigenvalue (how many different eigenvectors 

correspond to that eigenvalue) reveals how many connected components 

there are.

• Disconnected Graph of two components:

• largest eigenvalue = second largest eigenvalue.

30λ𝑁 − 𝜆𝑁−1=0
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Graph Clustering – Spectral domain
• D-regular Graphs:

• Almost disconnected Graph:

• largest eigenvalue ≈ second largest eigenvalue.

• Second largest eigenvalue ⇒what node should be in what Graph component:

• Largest eigenvector: 𝐮𝑁 = 1,… , 1 𝑇.

• Orthogonality constraint ⇒ Second eigenvector’s (𝐮𝑁−1) components must

sum to 0.

• 𝐮𝑁−1 splits the nodes into two groups (some values positive, some

negative).

31λ𝑁 − 𝜆𝑁−1≈0

𝒜 ℬ



Graph Clustering versus 

Community detection
• Graph clustering and community detection share many commonalities

[COSCIA2011].

• There is a rough distinction between them:

• Clustering: Group sets of points based on their features.

• Community detection: Group sets of points based on their connectivity.

• Related paper [GUID2017].
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Graph-based Clustering

Data graph visualization.
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Graph-based Clustering

a) Similarity graph; b) Similarity matrix.
34



Graph-based Clustering

• Vertex degree: number of vertex connection in 𝐀 .

• Gaussian kernel for edge weight calculation:

𝑊 𝑖, 𝑗 = ൞𝑒
−
||𝐱𝑖−𝐱𝑗||

2

2𝜎2 , if 𝐱𝑖 − 𝐱𝑗 < 𝑒,

0, otherwise.

• 𝑒: is a user-defined constant.

• || . || is Euclidean norm.

35



Graph-based Clustering

Nearest neighbor graphs
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a) 𝑘-nearest neighbors graph; b) 𝑒-neighborhood graph.



Graph-based Clustering

Graph Clustering

• Cluster graph vertices (data vectors) into tightly linked clusters.

• Vertices of the same cluster are:

• Strongly connected to each other and

• sparsely connected to the rest of the graph.

• Intra-cluster connectivity: measured by the cluster density.

• Inter-cluster connectivity: measured by graph cut cardinality.
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Graph-based Clustering

Laplacian matrix eigenanalysis:

• Non-decreasing eigenvalue order:

𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑁.

• Graph spectrum is the eigenvalue set: {𝜆𝑖 , 𝑖 = 1, … ,𝑁}

• It is invariant to graph isomorphism

• Graph vertex permutations.

• Non-isomorphic graphs can be co-spectral.
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Graph-based Clustering

• Algebraic connectivity (eigenvalue 𝜆2):

• If 𝜆2 > 0:

• graph 𝒢 is connected.

• else: 

• multiplicity of eigenvalue 0 is equal number of connected 

graph components.
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Graph-based Clustering

• Graph comprised of 𝑘 disjoint cliques:

• 𝑘 smallest eigenvalues of normalized Laplacian matrix are 0.

• 𝑖-th corresponding eigenvector (0 ≤ 𝑖 ≤ 𝑘 − 1) has non-zero

values for vertices of the 𝑖 –th clique.

• Adding edges cause the eigenvalues to increase and change

slightly corresponding eigenvectors.
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Graph-based Clustering

Graph clustering based on spectral bisection:

• 2-way graph partitioning.

• It uses the so-called Fiedler vector:

• eigenvector 𝐮2 corresponding to eigenvalue 𝜆2 of Laplacian matrix.
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Graph-based Clustering

N-Cut Graph Clustering (2-way partitioning).



Graph-based Clustering

Edge-based bisection:

• Compute Fiedler vector.

• Split vertices into 2 groups:

• their relevant Fiedler vector entries are below/above the

Fiedler vector entries median.

• Edges between these two groups are cut.
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Graph-based Clustering

Vertex-based bisection: 

• Compute Fiedler vector.

• Find the largest gap in Fiedler vector entries

• Split Fiedler vector entries accordingly. 

• Split the graph at the cut provides the best cut quotient.
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Graph-based Clustering

Spectral graph clustering:

• Perform eigenanalysis on one of the normalized

Laplacians.

• Extract 𝑟 eigenvectors corresponding to the smallest

eigenvalues excluding 𝜆1.

• Store eigenvectors in a N × 𝑟 matrix 𝐔.

• Its rows are the new data representation.

• Use any standard clustering algorithm to cluster them.
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Graph-based Clustering

Graph-based clustering properties:

• Little user input is needed. 

• Trivial clusters easily avoided.

• Unlikely to get bad clustering results. 

• They cannot be employed in extremely large graphs:

• Memory limitations. 

• Eigenanalysis has 𝑂(𝑁3) computational complexity. 
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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