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3D Image Registration

• 3D solid motion models

• Image registration

• 3D Point cloud registration
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2D motion models

• 2D solid motion model:

• Motion from 2D point 𝑥, 𝑦 𝑇 to point 𝑥′, 𝑦′ 𝑇:

𝑥′

𝑦′
=

𝑟11 𝑟12
𝑟21 𝑟22

𝑥
𝑦 +

𝑇𝑥
𝑇𝑦

.

• From the 6 relevant parameters, only 3 are independent:

• 1 rotation parameter (rotation angle) and the 2 translation

vector components).



2D motion models

Geometric image transforms

• 2D Image translation:

𝑏 𝑖 𝑗 = 𝑎 𝑖 + 𝑘 𝑗 + 1 .

• 2D Image rotation: If the image point 𝑎(𝑥, 𝑦) is rotated by

𝜃 degrees, its new coordinates (𝑥′, 𝑦′) are given by:

𝑥′

𝑦′
=

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

𝑥
𝑦 .
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2D motion models
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Image rotation.



3D motion models

• 3D solid object motion can be described by the affine

transformation:

𝐗′ = 𝐑𝐗 + 𝐓,

where 𝐓 is a 3 × 1 translation vector:

𝐓 =
𝑇𝑋
𝑇𝑌
𝑇𝑍

and 𝐑 is a 3 × 3 rotation matrix (having various forms).



3D motion models

• In Cartesian coordinates, 𝐑 can be described:

• either by the Euler rotation angles about the three coordinate

axes 𝑋, 𝑌, 𝑍.

• or by a rotation axis and a rotation angle about this axis.

• The matrices describing the clockwise rotation around each

axis in the three-dimensional space, are given by:

𝐑 = 𝐑𝑍𝐑𝑌𝐑𝑋.

• Their order does matter.

• 𝐑 is orthonormal, satisfying 𝐑𝑇 = 𝐑−1 and 𝑑𝑒𝑡 𝐑 = ±1.



3D motion models

Euler rotation angles.

𝐑𝑋 =
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

,

𝐑𝑌 =
cos 𝜓 0 sin𝜓
0 1 0

−sin𝜓 0 cos𝜓
,

𝐑𝑍 =
cos𝜑 − sin𝜑 0
sin𝜑 cos 𝜑 0
0 0 1

.



3D motion models

Object rotation about a rotation axis.



3D motion models

• 3D rotation can also be represented by quaternions that are

extensions of complex numbers:

𝐪 = 𝑞0 + 𝑞1𝐢 + 𝑞2𝐣 + 𝑞3𝐤

𝑞0, 𝑞1, 𝑞2, 𝑞3 are real numbers and:

𝐢2 = 𝐣2 = 𝐤2 = 𝐢𝐣𝐤 = −1

• Unit quaternion 𝐪𝑅 = 𝑞0 𝑞1 𝑞2 𝑞3
𝑇. It satisfies:

𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 = 1.
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3D motion models

• 3D solid motion model:

𝑋′

𝑌′

𝑍′
=

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

𝑋
𝑌
𝑍

+
𝑇𝛸
𝑇𝑌
𝑇𝛧

.

• From the 12 relevant parameters, only 6 are independent (3

rotation parameters and the 3 translation vector

components).



Image registration

• 2D/3D solid motion models

• Image registration

• 2D image registration

• 3D image registration

• Point cloud registration

• 2D point cloud registration

• 3D point cloud registration
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2D Image registration

• 2D affine mapping transformation: it describes 2D rotation,

translation and scaling.

• It can be used for 2D image registration and subtraction.

Subtractive radiography.



2D Image registration

• 2D affine transformation for image registration.

• Overlapping image regions are registered and mosaicking.



2D Image registration

• 2D image registration and mosaicking.



Image registration

• 3D solid motion models

• Image registration

• 2D image registration

• 3D image registration

• Point cloud registration

• 2D point cloud registration

• 3D point cloud registration
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3D point cloud registration
• Registration of two 3D datasets is a common problem in 3D image

analysis.

• Methods are distinguished by the type of geometric transforms they

handle and whether the correspondence between matching points is

known or not.

• The most used method is Iterative Closest Point (ICP).

• It handles rigid transformations consisting of rotations and translations

without a-priori knowledge of the correspondence between points.

• The algorithm handles various types of data, including point sets, line

segment sets, triangle sets and implicit/parametric surfaces.
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3D point cloud registration

a) Model 3D tooth; b) Slice of model 3D tooth; c) Slice of data volume (3D

tooth model rotated and translated along x-axis and translated along y-

axis); d) Overlaid model (red channel) and registered (green channel) 3D

tooth.
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3D point cloud registration

The simplest case of the ICP algorithm is registration of two

sets of geometrical data represented as point sets.

• Let 𝑁𝑝, 𝑁𝑥 be the number of points in sets 𝒫,𝒳 respectively:

𝒫 = 𝐩𝑖 , 𝑖 = 1, … , 𝑁𝑝,

𝒳 = 𝐱𝑖 , 𝑖 = 1, … , 𝑁𝑥 ,

• 𝐩𝑖 , 𝐱𝑖 the 3D vectors (voxel coordinates):

𝐱𝑖 = [𝑋𝑖 𝑌𝑖 𝑍𝑖]
𝑇 .
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ICP algorithm

ICP algorithm is an iterative algorithm that evaluates the

correspondence between two 3D point sets.

• It estimates the optimum registration vector (the set of

translation and rotation parameters that lead to the optimum

registration)

• It applies the derived transformation to one of the sets.

The process is repeated until a certain dissimilarity measure

(e.g., the mean square error) becomes smaller than a certain

value.
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• SVD-based methods demonstrate highest accuracy and

stability when compared to quaternion-based methods

[LIN2017].

• They are still inferior to ICP [BEL2015].
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SVD 3D Point Cloud 

Registration



• First, it is assumed that the centroid of 𝒫 is translated to the

centroid of 𝒳. Thus, restating the problem without translation,

the points of the two sets can be rewritten as:

𝒫𝑐 = 𝐩𝑖 − 𝛍𝑝, 𝑖 = 1, … , 𝑁𝑝 ,

𝒳𝑐 = 𝐱𝑖 − 𝛍𝑥 , 𝑖 = 1, … , 𝑁𝑥 ,

𝛍𝑝 =
1

𝑁𝑝
σ
𝑖=1

𝑁𝑝 𝐩𝑖,           𝛍𝑥 =
1

𝑁𝑥
σ
𝑖=1
𝑁𝑥 𝐱𝑖.

• Using the points of the two sets 𝒫𝑐 , 𝒳𝑐 the matrices 𝐏𝑐 ∈
ℛ𝑁𝑝×3, 𝐗𝑐 ∈ ℛ𝑁𝑥×3 are created. From now on we assume 𝑁𝑝 =

𝑁𝑥 = 𝑁.
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SVD 3D Point Cloud 

Registration



• Optimal rotation 𝐑 implies the minimization of the

transformation error:

𝐑 = argmin𝐑 𝐗𝑐 − 𝐏𝑐𝐑 𝐹
2 .

• This is an orthogonal Procrustes problem.

• Matrix approximation problem.

• Frobenius norm ∙ 𝐹 is defined as:

𝐴 𝐹 = 𝑡𝑟(𝐴𝑇𝐴) = 

𝑖=1

𝑚



𝑗=1

𝑛

𝑎𝑖𝑗
2 .
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SVD 3D Point Cloud 

Registration



Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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