2D Object Detection and Tracking

VML

summary

V. Nousi, I. Karakostas, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 2.5.1

Object Detection

3

Object Detection

Object Tracking

2D Object detection and Tracking

- Object Detection and Forward Tracking
- Object Forward-Backward Tracking

2D Object detection and Tracking

- Video tracking is the process of locating a moving object (or multiple objects) over time using a camera.
- Variety of uses:
 - human-computer interaction
 - security and surveillance
 - video communication and compression
 - augmented reality and video editing
 - traffic control
 - medical imaging.
- Video tracking can be a time consuming process due to the amount of data that is contained in video.

Object Detection and Tracking

Problem statement:

- To detect a target/object (e.g. human face) that appear in each video frame and localize their Region-Of-Interest (ROI).
- To track the detected object over the video frames.

Object Detection and Tracking

- **Periodic object re-detection** can be applied to account for new objects entering the camera's field-of-view.
- Forward and backward tracking, when the entire video is available.

Football player detection

Boat detection

Joint Detection & Tracking

- **Tracker node**: Given the initialized position of a target, the tracker *T* is responsible for estimating the bounding box of the target in the subsequent frames.
- **Detector:** Given a bounding box defining the target in specific frame produced by the tracker, the detector *D* is responsible for verifying this result, and then provide the appropriate feedback to the system.
 - **Master Visual Analysis:** If the verification from *D* fails, Master Visual Analysis is responsible for the re-initialization of the tracker *T* with the corrected bounding box.

Joint Detection & Tracking (JTD)

Joint Detection & Tracking (JTD)

Joint Detection & Tracking

• Target re-initialization by the detector in hard tracking cases when tracking algorithms fail.

Joint Detection & Tracking

• Target reinitialization by the detector in hard tracking cases when tracking algorithms fail.

2D Object detection and Tracking

- Object Detection and Forward Tracking
- Object Forward-Backward Tracking

Forward-Backward Tracking Motivation

- Forward in time tracking: different results than backward in time tracking.
 One mode of tracking may succeed where the other fails
- The key point: post-process the results of a forward and a backward tracking jointly, in order to refine the tracking results
- Same reasoning for stereoscopic video: performing tracking on both channels of a video provides us with more information than using only one.

F-BTracking in Stereo Video

VML

Quantitative Results

Algorithm performance (ATA) using stereo data

Name	Detection period	Fowrard	FP	FBP	FBSP	
Badminton	20	0.614	0.620	0.625	0.634	
	30	0.604	0.612	0.624	0.630	
	40	0.580	0.589	0.594	0.601	

Bayesian post-processing algorithms:

Forward tracking (FP)

Forward and backward tracking (FBP)

Forward and backward tracking in stereo sequence (FBSP)

Forward-Backward Stereo Tracking Results

F-B tracking conclusions

- Combining information from forward, backward tracking in a stereoscopic video, leads to more accurate tracking results.
- In terms of ATA, accuracy is increased proportionally to tracking failures of the standard single channel algorithm
- However, in tracking failures, it seems that the extra channel information from stereo is not fully exploited

Bibliography

[PIT2017] I. Pitas, "Digital video processing and analysis", China Machine Press, 2017 (in Chinese).

[PIT2013] I. Pitas, "Digital Video and Television", Createspace/Amazon, 2013.
[PIT2021] I. Pitas, "Computer vision", Createspace/Amazon, in press.
[NIK2000] N. Nikolaidis and I. Pitas, "3D Image Processing Algorithms", J. Wiley, 2000.
[PIT2000] I. Pitas, "Digital Image Processing Algorithms and Applications", J. Wiley, 2000.

Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas pitas@csd.auth.gr

