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Introduction

During the last decade, Convolutional Neural Networks (CNNs) have

become the standard for multiple Computer Vision and Machine Learning

operations. Yet, this may not be a viable option in numerous applications

over 1D signals especially when the training data is scarce or application

specific. 1D CNNs have recently been proposed and immediately achieved

great results in several applications.



Deep Neural Networks

Deep Neural Networks (DNN) have a

count of layers (depth) 𝐿 ≥ 3.

• Typically, these networks contain a big

number of hidden layers (𝐿 ≫ 3).

Deep Neural Network with 𝐿 = 4



• The classic neurons have a weighted sum on vectors (1D) of features

values:

𝑧 = 𝑤0 +σ𝑖=1
𝑛 𝑤𝑖𝑥𝑖 = 𝑤0 +𝐰𝑇𝐱.

• If for example we input 𝑁1× 𝑁2 pixel color images are represented by

huge dimensionality vectors 𝑛 = 𝑁1 × 𝑁2 × 3, they cannot be processed

by fully connected Multilayer Perceptrons.

• Problem: Increased computational complexity.

• Solution: Convolutional Neural Networks (CNNs) that employ sparse

connectivity and weight replication.

Deep Neural Networks



Convolutional Neural Networks

• CNNs produce great results by utilizing 2D convolutions on 2D or 3D

input.

• In various studies [1] it was shown that for dealing with the processing

of certain 1D signals, CNNs with 1 dimensional convolution kernels (1D

CNN) are preferrable to their 2D counterpart.

• Standard 1D CNN input is a 1D signal represented by a 1D vector X

that contains samples from an analog signal (e.g., Sound), time series

(e.g., Text, Financial data) etc.



Convolutional Neural Networks

1D Convolutional Neural Networks (1D CNN):

• Employ 1-dimensional linear convolutions in the first layers, followed by a 

pooling operation.

• They may employ fully connected MLPs in the last layers.

Basic CNN structure.



1D Convolution

1D (linear) convolution of an 𝑀 length convolution kernel (or filter) 𝑤
with a signal 𝑥 of size 𝑁, is defined by:

𝑦 𝑛 = 𝑤 𝑛 ∗ 𝑥(𝑛) = σ𝑘=0
𝑀−1𝑤(𝑘)𝑥 𝑛 − 𝑘 .

• If filter window has odd size (M = 2𝜈 + 1) and is centered around 0,

1D convolution takes the form:

𝑦 𝑛 = 𝑤 𝑛 ∗ 𝑥 𝑛 = 

𝑘=−𝜈

𝜈

𝑤(𝑘)𝑥 𝑛 − 𝑘 .
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1D Convolution
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1D Convolution
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1D CNN Architecture

• Basic skeleton of a 1D CNN.

• Each CNN hidden layer consists of:

• A convolutional layer with multiple

neurons, where each one is a 1D

convolutional kernel

• An activation function

• A pooling layer for downsampling



Convolutional Layer
Convolutional Layers

• For a convolutional layer 𝑙 with an activation function 𝑓(𝑙)(∙), multiple

incoming features 𝑑𝑖𝑛 and one single output feature 𝑜:

𝑎𝑖𝑜
𝑙
= 𝑓 𝑙 

𝑟=1

𝑑𝑖𝑛



𝑘=−𝜈(𝑙)

𝜈(𝑙)

𝑤𝑘𝑟𝑜
𝑙
𝑎 𝑖−𝑘 𝑟
(𝑙−1)

+ 𝑏𝑜
(𝑙)

.

• The input to the first convolutional layer is a multichannel signal 𝑥𝑗𝑟:

𝑎𝑖𝑜
0
= 𝑥𝑖𝑟

• Feature map 𝑎𝑖𝑟
𝑙

downsampling is typically performed, e.g., using 

strided convolutions or through max/average pooling layers.



Fully Connected Layer

⚫ The mathematical description of the 𝑙𝑡ℎ

fully connected layer is given by:

𝑧𝑗
(𝑙)

= 𝐰𝑗
𝑙 𝑇
𝐚(𝑙−1) + 𝑏𝑗

(𝑙)
,

𝑎𝑗
(𝑙)

= 𝑓(𝑙)(𝐰𝑗
𝑙 𝑇
𝐚(𝑙−1) + 𝑏𝑗

(𝑙)
).

⚫ In compact form:

𝐖(𝑙) = 𝐰𝑗
𝑙

𝑗=1

𝑘𝑙
,

𝐛(𝑙) = b𝑗
𝑙

𝑗=1

𝑘𝑙
,

𝐳(𝑙) = 𝐖 𝑙 𝑇𝐚(𝑙−1) + 𝐛(𝑙),

𝒂(𝑙) = 𝒇(𝑙) 𝐳 𝑙 .
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Fully Connected Layer

⚫ Last (output) layer 𝑙 = 𝐿 , with 𝑘𝑙 = 1
(regression, two class classification) or 𝑚
(multi-class classification):

𝑧𝑗
(𝐿)

= 𝐰𝑗
𝐿 𝑇

𝐚(𝐿−1) + 𝑏𝑗
(𝐿)
,

ො𝑦𝑗 = 𝑓(𝐿) 𝐰𝑗
𝐿 𝑇

𝐚(𝐿−1) + 𝑏𝑗
(𝐿)

.

⚫ Overall, CNN computes the function
ො𝐲 = 𝒇 𝐱; 𝛉 , where 𝛉 ∈ ℝ𝑑 groups all trainable
parameters (convolution kernels, fully
connected layer weights and biases).
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Pooling layers are added inside a CNN architecture primarily for

downsampling, aiming to reduce the computational cost. Secondarily helps

on translation invariance.

▪ The pooling window is moved over an activation map 𝐀𝑖𝑜
𝑙

with stride 

𝑠.

▪ Typical pool window sizes 2, 3.

▪ Downsampling usually with 𝑠 = 2.

▪ Pools could overlap, e.g., max-pooling window with length 3, stride 2.

• Ad-hoc decision to use pooling or not.

• No formal justification for the effect of overlapping on pooling regions.

Pooling Layers



Pooling Layers



Activation Functions
• Sigmoid and hyperbolic tangent function are not proper for CNNs,

because they lead to the vanishing gradients problem.

• Rectifiers are more suitable for activation functions.

▪ ReLU - Rectified Linear Unit

a = 𝑅𝑒𝐿𝑈 𝑧 = max z, 0 : ℝ → 0,+∞

▪ ReLU6 - Rectified Linear Unit Bounded by 6

a = 𝑚𝑖𝑛 𝑅𝑒𝐿𝑈 𝑧 , 6 = min max z, 0 , 6 : ℝ → 0,6

▪ Softplus

a = 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠 𝑧 = 𝑙𝑜𝑔 1 + 𝑒𝑧 : ℝ → 0,+∞



Activation Functions

• Activation functions with positive range of values have mean activation

larger than zero, leading to the bias shift problem.

▪ Activations of neurons should be capable of cancelling each other at

the next layer.

• Advanced activation functions try to mitigate the negative effects of ReLU.

• Leaky Rectified Linear Unit (LReLU):

𝑎 = 𝐿𝑅𝑒𝐿𝑈 𝑧 = ቊ
𝑅𝑒𝐿𝑈 𝑧 , 𝑧 ≥ 0

− 𝑐 ∙ 𝑅𝑒𝐿𝑈 −𝑧 , 𝑧 < 0.

• Parametric Rectified Linear Unit (PReLU).

• Randomized Leaky Rectified Linear Unit

(RReLU).



Activation Functions

• ELU activation function aims to mitigate the bias shift

problem:

𝑎 = 𝐸𝐿𝑈 𝑧 = ൝
𝑅𝑒𝐿𝑈(𝑧) = max 𝑧, 0 , 𝑧 ≥ 0

𝑐 ∙ 𝑒𝑧 − 1 , 𝑧 < 0 ,

0 < 𝑐 ≤ 1

• It achieves faster training convergence.



Activation Functions

• Swish activation function has been found to provide improved

performance for large datasets:

𝑎 = 𝑧𝜎 𝑧 =
𝑧

1 + 𝑒−𝑐𝑧
.



Supervised Learning

• A sufficient large training sample set 𝒟 is required for Supervised

Learning (regression, classification):

𝒟 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1,… ,𝑁}.

• 𝐱𝑖 ∈ ℝ𝑛 : 𝑛 – dimensional input (feature) vector of the 𝑖-th training

sample.

• 𝐲𝑖: its target label (output).

• Target form 𝐲 can vary:

• it can be categorical, a real number or a combination of both.



Supervised Learning

• Training: Given 𝑁 pairs of training samples 𝒟 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1,…𝑁},
where 𝐱𝑖 ∈ ℝ𝑛 and 𝐲𝑖 ∈ 0,1 𝑚, estimate 𝛉 by minimizing a loss

function: min
𝛉

𝐽(𝐲, ො𝐲).

• Inference/testing: Given 𝑁𝑡 pairs of testing examples 𝒟𝑡 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 =
1,… ,𝑁𝑡} , where 𝐱𝑖 ∈ ℝ𝑛 and 𝐲𝑖 ∈ 0,1 𝑚, compute (predict) ෝ𝐲𝑖 and

calculate a performance metric, e.g., classification accuracy.



Classification/Recognition/

Identification
• Given a set of classes 𝒞 = 𝒞𝑖 , 𝑖 = 1,… ,𝑚 and a sample 𝐱 ∈ ℝ𝑛, the ML

model ො𝐲 = 𝐟(𝐱; 𝛉) predicts a class label vector ො𝐲 ∈ 0, 1 𝑚 for input

sample 𝐱, where 𝛉 are the learnable model parameters.

• Essentially, a probabilistic distribution 𝑃(ො𝐲; 𝐱) is computed.

• Interpretation: likelihood of the given sample 𝐱 belonging to each class 𝒞𝑖 .

• Single-target classification:

• Classes 𝒞𝑖 , 𝑖 = 1,… ,𝑚 are mutually exclusive: ||ො𝐲||1 = 1.

• Multi-target classification:

• Classes 𝒞𝑖 , 𝑖 = 1,… ,𝑚 are not mutually exclusive : ||ො𝐲||1 ≥ 1.



Classification

• Classification:

• Two class (𝑚 = 2) and multiple class (𝑚 > 2) classification.

• Example: Emotion detection from Speech (two classes), emotion

recognition from Speech (many classes).
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Classification

Multiclass Classification (𝑚 > 2):

• Multiple (𝑚 > 2) hypothesis testing: choose a winner class

out of 𝑚 classes.

• Binary hypothesis testing:

• One class against all: 𝑚 binary hypothesis.

• one must be proven true.

• Pair-wise class comparisons: 𝑚(𝑚 − 1)/2 binary hypothesis.
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Regression

Given a sample 𝐱 ∈ ℝ𝑛 and a function 𝐲 = 𝒇(𝐱), the model predicts real-

valued quantities for that sample: ො𝐲 = 𝒇(𝐱; 𝛉), where ො𝐲 ∈ ℝ𝑚and 𝛉 are the

learnable parameters of the model.

• Training: Given 𝑁 pairs of training examples 𝒟 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1,…𝑁},
where 𝐱𝑖 ∈ ℝ𝑛 and 𝐲𝑖 ∈ ℝ𝑚, estimate 𝛉 by minimizing a loss function:

min
𝛉

𝐽(𝐲, ො𝐲) .

• Testing: Given 𝑁𝑡 pairs of testing examples 𝒟𝑡 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1,… ,𝑁𝑡},
where 𝐱𝑖 ∈ ℝ𝑛 and 𝐲𝑖 ∈ ℝ𝑚 , compute (predict) ො𝐲𝑖 and calculate a

performance metric, e.g., MSE.



CNN Training 
• Mean Square Error (MSE):

𝐽 𝛉 = 𝐽 𝐖, 𝐛 =
1

𝑁
σ𝑖=1
𝑁 ො𝐲𝑖 − 𝐲𝑖

2.

• It is suitable for regression and classification.

• Categorical Cross Entropy Error:

𝐽𝐶𝐶𝐸 = −σ𝑖=1
𝑁 𝑦𝑖 log ො𝑦𝑖 .

• It is suitable for classifiers that use softmax output layers.
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CNN Training 
• Exponential Loss:

𝐽(𝛉) = σ𝑖=1
𝑁 𝑒−𝛽𝐲𝑖

𝑇 ො𝐲𝑖.

• Hinge Loss:

𝐽(𝛉) = σ𝑖=1
𝑁 max(0, 1 − 𝑦𝑖 ො𝑦𝑖) .

• It can be used with binary classification where the target values are in 
the set {−1, 1}.
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Backpropagation

• The most widespread algorithm for supervised training of CNNs is the

Backpropagation algorithm.

• Unlike typical MLPs, the summation that occurs inside each convolutional

neuron during forward pass uses convolution instead of normal

multiplication.

• Training is performed as a problem of minimization of a cost function.

• MSE is the most common cost function.



CNN Training
• CNNs are trained with the same gradient descent methods as multilayer

perceptron.

• Optimization methods:

▪ Learning rate decay allows scheduled changes to the learning rate

at the various training epochs.

▪ ADAM is an optimization method with an adaptive learning rate.

• Large scale datasets are needed to adequately train a CNN.



Data Augmentation:

• It is used to avoid overfitting.

• The training set is augmented during training with label-preserving

transformation of the samples.

CNN Training



Softmax Layer:

• It is the last layer in several neural network classifiers.

• The response of neuron 𝑖 in the softmax layer 𝐿 is calculated with

regard to the value of its activation function 𝑎𝑖 = 𝑓 𝑧𝑖 :

ො𝑦𝑖 = 𝑔 𝑎𝑖 =
𝑒𝑎𝑖

σ
𝑘=1
𝑘𝐿 𝑒𝑎𝑘

: ℝ → 0,1 , 𝑖 = 1, . . , 𝑘𝐿 ,

• The responses of softmax neurons sum up to one: σ𝑖=1
𝑘𝐿 ො𝑦𝑖 = 1.

• Better representation for mutually exclusive class labels.
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Dropout randomly excludes a set of neurons from a certain training epoch

with a constant keep out probability 𝑝𝑘𝑒𝑒𝑝.

• Activations of dropped out neurons are set to zero.

▪ They do not participate in the loss, thus excluded from back-

propagation.

▪ Dropout was initially used in AlexNet after each fully connected layer.

▪ During testing a trained model, all neurons are used with their

already learned weights.

• Induces dynamic sparsity during training.

• Prevents complex co-adaptations of the 

synaptic weights, that may lead to correlated 

activations of neurons.

CNN Training



1D CNN Use Cases 

Examples

34

• ECG Monitoring

• Music Auto - Tagging



ECG Monitoring
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• Because of high inter-patient variations of ECG signals, the 

multiple methods that proposed a single classifier algorithm, 

didn’t have much success.

• For example, patients that may have arrhythmia have 

different normal heart beats, that may however, be 

extremely similar to another patient’s abnormal beats.



ECG Monitoring
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Overview of the arrythmia detection and identification system proposed on [real-time 

patient specific ECG classification]. Image from [1]



ECG Monitoring

37

Image from [Personalized monitoring and 

advance warning system for cardiac arrhythmias]

• Modelling common 

causes of cardiac 

arrhythmia in the signal 

domain by a degrading 

system.



ECG Monitoring
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Image from [Personalized monitoring and 

advance warning system for cardiac arrhythmias]

• An illustration of an 

abnormal S beat 

synthesis.



ECG Monitoring
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Image from [Personalized monitoring and 

advance warning system for cardiac arrhythmias]

• Illustration of the overall 

system. Once the 1D CNN is 

trained, it can be used as a 

continuous cardiac monitoring 

and warning system. 



Music Auto - Tagging
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• In [sample-level architectures for music auto-tagging using 

raw waveforms] a 1-D CNN architecture was proposed for 

music auto-tagging.

• This network adopted building blocks from image 

classification models (ResNets and SENets).

• The results show significant improvements on accuracy in 

MagnaTagATune dataset, and comparable results on 

Million Song Dataset.



Music Auto - Tagging
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Image from [sample-level architectures for music auto-tagging using raw 

waveforms] 
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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