

Set Theory summary

A. Tsamoglou, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 2.4

Set theory

- Sets
- Fuzzy sets
- Applications

• A set of *n* set members $z_i = 1, ..., n$ is denoted by:

$$\mathcal{A} = \{z_1, \ldots, z_n\}.$$

•
$$|\mathcal{A}| = n$$
: set cardinality.

• If \mathcal{B} is a **subset** of \mathcal{A} , it is denoted as :

$$\mathcal{B} \subset \mathcal{A} \equiv z \in \mathcal{B} \Rightarrow z \in \mathcal{A}.$$

- Subsets of \mathcal{A} are the null set \emptyset , as well as sets containing any number of set \mathcal{A} members z_i .
- Always:

$$\{\emptyset\} \subset \mathcal{A}, \qquad \mathcal{A} \subseteq \mathcal{A}.$$

• If E is the *universal set* of all sets :

 $\mathcal{A} \subset \mathcal{E}, \quad \forall \mathcal{A}.$

• **Power set** of a set \mathcal{A} has members all possible subsets of

 $\mathcal{A}.$

• Set union $\mathcal{A} \cup \mathcal{B}$ is defined by:

 $z \in \mathcal{A} \text{ or } z \in \mathcal{B} \Rightarrow z \in (\mathcal{A} \cup \mathcal{B}).$

• Set intersection $\mathcal{A} \cap \mathcal{B}$ is defined by:

 $z \in \mathcal{A} \text{ and } z \in \mathcal{B} \Rightarrow z \in (\mathcal{A} \cap \mathcal{B}).$

VML

Sets

• Set operation properties:

 $\mathcal{A} \cup \mathcal{B} = \mathcal{B} \cup \mathcal{A},$ $(\mathcal{A} \cup \mathcal{B}) \cup \mathcal{C} = \mathcal{A} \cup (\mathcal{B} \cup \mathcal{C}) = \mathcal{A} \cup \mathcal{B} \cup \mathcal{C},$ $\mathcal{A} \cap \mathcal{B} = \mathcal{B} \cap \mathcal{A},$ $(\mathcal{A} \cap \mathcal{B}) \cap \mathcal{C} = \mathcal{A} \cap (\mathcal{B} \cap \mathcal{C}) = \mathcal{A} \cap \mathcal{B} \cap \mathcal{C}.$

• **Borel Field** (σ -field) is a field having the following additional property:

$$\mathcal{A}_i \in \mathcal{F} \Rightarrow (\cup_i \mathcal{A}_i) \in \mathcal{F} \Rightarrow (\cap_i \mathcal{A}_i) \in \mathcal{F}$$

for any possible countable infinite sequence \mathcal{A}_i .

• It can be proven that the collection of all \mathcal{F} subsets of the set \mathcal{E} is a Borel Field.

Set theory

- Sets
- Fuzzy sets
- Applications

- Let \mathcal{E} is a universal set of objects $z \in \mathcal{E}$.
- Crisp set \mathcal{A} ($\mathcal{A} \subset \mathcal{E}$) membership function $A_i(z)$: $\mathcal{E} \rightarrow \{0,1\}$:

$$A_i(z) = \begin{cases} 1, & \text{if } z \in \mathcal{A} \\ 0, & \text{if } z \notin \mathcal{A}. \end{cases}$$

• Fuzzy set $\mathcal{A} (\mathcal{A} \subset \mathcal{E})$ membership function: $A_i(z): \mathcal{E} \rightarrow [0,1].$

• Fuzzy set \mathcal{A} is fully characterized as follows :

$$\mathcal{A} = \{ (z, A_i(z)), z \in \mathcal{E} \}.$$

When *E* = {*z*₁,..., *z_n*} is a finite element set, a fuzzy set *A* is expressed by:

$$\mathcal{A} = A_i(z_1)/z_1 + \dots + A_i(z_n)/z_n.$$

Set theory

- Sets
- Fuzzy sets
- Applications

28

Images as sets

- An image domain is set:
- Continuous images: $\mathcal{X} \in \mathbb{R}^2$.
- digital images (set of *pixels*): $\mathcal{X} \in \mathbb{Z}^2$.
- Typically is $\mathcal{X} \in \mathbb{Z}^2$ is a $N \times M$ rectangle of pixels.

Volumetric images:

• Their domain (set of *voxels*): $\mathcal{X} \in \mathbb{Z}^3$.

Image domain \mathcal{X} .

Erosion and dilation are special cases of *Minkowski set addition* and *Minkowski set subtraction*:

$$\mathcal{X} \oplus \mathcal{B}^{s} = \bigcup_{b \in \mathcal{B}} \mathcal{X}_{b}, \qquad \mathcal{X} \ominus \mathcal{B}^{s} = \bigcap_{b \in \mathcal{B}} \mathcal{X}_{b}.$$

a) Thresholded image; b) eroded and c) dilated image by the structuring elements SQUARE. Artificial Intelligence & **Information Analysis Lab**

Image segmentation

Foreground and background segmentation.

Object Detection Performance Metrics

Intersection over Union (IoU):

 $J(\mathcal{A},\mathcal{B}) = |\mathcal{A} \cap \mathcal{B}| / |\mathcal{A} \cup \mathcal{B}|.$

- \mathcal{A}, \mathcal{B} : estimated, ground truth ROIs (sets, bounding boxes).
- $|\mathcal{A}|$: set cardinality (area counted in pixels)
- Also called Jaccard Similarity Coefficient or Overlap Score.

Object Detection Performance Metrics

Object detection: a) $J(\mathcal{A}, \mathcal{B}) = 0.67$; b) $J(\mathcal{A}, \mathcal{B}) = 0.27$.

Data sets

- An object can be represented by a real-valued feature vectors:
 x ∈ ℝⁿ.
- A data set is a feature vector set: $\mathcal{D} = {\mathbf{x}_i}_{i=1}^N$.

Crisp/fuzzy set clustering

• **Crisp clustering** is the partition of \mathcal{D} into m sets $\mathcal{C}_1, \ldots, \mathcal{C}_m$, satisfying the following conditions:

•
$$\mathcal{C}_i \neq \emptyset$$
, $i = 1, \dots, m$,

•
$$\bigcup_{i=1}^m \mathcal{C}_i = \mathcal{D}$$

- $\mathcal{C}_i \cap \mathcal{C}_j = \emptyset$, $i \neq j$, i, j = 1, ..., m.
- Feature vectors \mathbf{x}_i in a cluster C_i are 'similar', while they are 'dissimilar' to the ones of other clusters C_j , $i \neq j$.