Set Theory summary

A. Tsamoglou, Prof. Ioannís Pitas

Aristotle University of Thessaloniki pitas@csd.auth.gr
www.aiia.csd.auth.gr
Version 2.4

Set theory

- Sets
- Fuzzy sets
- Applications

Sets

- A set of n set members $z_{i}=1, . ., n$ is denoted by:

$$
\mathcal{A}=\left\{z_{1}, \ldots, z_{n}\right\} .
$$

- $|\mathcal{A}|=n$: set cardinality.
- If \mathcal{B} is a subset of \mathcal{A}, it is denoted as :

$$
\mathcal{B} \subset \mathcal{A} \equiv z \in \mathcal{B} \Rightarrow z \in \mathcal{A} .
$$

Sets

- Subsets of \mathcal{A} are the null set \emptyset, as well as sets containing any number of set \mathcal{A} members z_{i}.
- Always:

$$
\{\varnothing\} \subset \mathcal{A}, \quad \mathcal{A} \subseteq \mathcal{A} .
$$

- If \mathcal{E} is the universal set of all sets:

$$
\mathcal{A} \subset \mathcal{E}, \quad \forall \mathcal{A} .
$$

- Power set of a set \mathcal{A} has members all possible subsets of \mathcal{A}.

Sets

- Set union $\mathcal{A} \cup \mathcal{B}$ is defined by:

$$
z \in \mathcal{A} \text { or } z \in \mathcal{B} \Rightarrow z \in(\mathcal{A} \cup \mathcal{B})
$$

- Set intersection $\mathcal{A} \cap \mathcal{B}$ is defined by:

$$
z \in \mathcal{A} \text { and } z \in \mathcal{B} \Rightarrow z \in(\mathcal{A} \cap \mathcal{B}) \text {. }
$$

Sets

- Set operation properties:

$$
\begin{gathered}
\mathcal{A} \cup \mathcal{B}=\mathcal{B} \cup \mathcal{A}, \\
(\mathcal{A} \cup \mathcal{B}) \cup \mathcal{C}=\mathcal{A} \cup(\mathcal{B} \cup \mathcal{C})=\mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \\
\mathcal{A} \cap \mathcal{B}=\mathcal{B} \cap \mathcal{A}, \\
(\mathcal{A} \cap \mathcal{B}) \cap \mathcal{C}=\mathcal{A} \cap(\mathcal{B} \cap \mathcal{C})=\mathcal{A} \cap \mathcal{B} \cap \mathcal{C}
\end{gathered}
$$

Sets

- Borel Field (σ-field) is a field having the following additional property:

$$
\mathcal{A}_{i} \in \mathcal{F} \Rightarrow\left(U_{i} \mathcal{A}_{i}\right) \in \mathcal{F} \Rightarrow\left(\cap_{i} \mathcal{A}_{i}\right) \in \mathcal{F}
$$

for any possible countable infinite sequence \mathcal{A}_{i}.

- It can be proven that the collection of all \mathcal{F} subsets of the set \mathcal{E} is a Borel Field.

Set theory

- Sets
- Fuzzy sets
- Applications

Fuzzy sets

- Let \mathcal{E} is a universal set of objects $z \in \mathcal{E}$.
- Crisp set $\mathcal{A}(\mathcal{A} \subset \mathcal{E})$ membership function $A_{i}(z): \mathcal{E} \rightarrow$ $\{0,1\}$:

$$
A_{i}(z)= \begin{cases}1, & \text { if } z \in \mathcal{A} \\ 0, & \text { if } z \notin \mathcal{A} .\end{cases}
$$

- Fuzzy set $\mathcal{A}(\mathscr{A} \subset \varepsilon)$ membership function:

$$
A_{i}(z): \mathcal{E} \rightarrow[0,1] .
$$

Fuzzy sets

- Fuzzy set \mathcal{A} is fully characterized as follows :

$$
\mathcal{A}=\left\{\left(z, A_{i}(z)\right), z \in \mathcal{E}\right\} .
$$

- When $\mathcal{E}=\left\{z_{1}, \ldots, z_{n}\right\}$ is a finite element set, a fuzzy set \mathcal{A} is expressed by:

$$
\mathcal{A}=A_{i}\left(z_{1}\right) / z_{1}+\cdots+A_{i}\left(z_{n}\right) / z_{n} .
$$

Set theory

- Sets
- Fuzzy sets
- Applications

Images as sets

- An image domain is set:
- Continuous images: $X \in \mathbb{R}^{2}$.
- digital images (set of pixels): $X \in \mathbb{Z}^{2}$.
- Typically is $\mathcal{X} \in \mathbb{Z}^{2}$ is a $N \times M$ rectangle of pixels.
Volumetric images:
- Their domain (set of voxels): $x \in \mathbb{Z}^{3}$.

Image domain X.

Mathematical morphology

Erosion and dilation are special cases of Minkowski set addition and Minkowski set subtraction:

$$
\mathcal{X} \oplus \mathcal{B}^{s}=\bigcup_{b \in \mathcal{B}} x_{b}, \quad X \ominus \mathcal{B}^{s}=\bigcap_{b \in \mathcal{B}} x_{b}
$$

(a)

(b)

(c)
a) Thresholded image; b) eroded and c) dilated image by the structuring elements SQUARE.

Image segmentation

Foreground and background segmentation.

Object Detection Performance Metrics

Intersection over Union (IoU):

$$
J(\mathcal{A}, \mathcal{B})=|\mathcal{A} \cap \mathcal{B}| /|\mathcal{A} \cup \mathcal{B}| .
$$

- \mathcal{A}, \mathcal{B} : estimated, ground truth ROIs (sets, bounding boxes).
- $|\mathcal{A}|$: set cardinality (area counted in pixels)
- Also called Jaccard Similarity Coefficient or Overlap Score.

Object Detection Performance Metrics

Object detection: a) $J(\mathcal{A}, \mathcal{B})=0.67 ;$ b) $J(\mathcal{A}, \mathcal{B})=0.27$.

Data sets

- An object can be represented by a realvalued feature vectors: $\mathbf{x} \in \mathbb{R}^{n}$.
- A data set is a feature vector set: $\mathcal{D}=\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$

Data set \mathcal{D}.

Crisp/fuzzy set clustering

Let \mathcal{D} be a feature data set: $\mathcal{D}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$.

- Crisp clustering is the partition of \mathcal{D} into m sets $\mathcal{C}_{1}, \ldots, \mathcal{C}_{m}$, satisfying the following conditions:
- $\mathcal{C}_{i} \neq \emptyset$,

$$
i=1, \ldots, m
$$

- $\cup_{i=1}^{m} \mathcal{C}_{i}=\mathcal{D}$,
- $\mathcal{C}_{i} \cap C_{j}=\varnothing, \quad i \neq j, \quad i, j=1, \ldots, m$.
- Feature vectors \mathbf{x}_{i} in a cluster \mathcal{C}_{i} are 'similar', while they are 'dissimilar' to the ones of other clusters $\mathcal{C}_{j}, i \neq j$.

