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Object Pose Estimation

• Introduction

• 6D object pose estimation through object detection

• 3D object pose regression.

• 3D object pose classification.

• 3D object pose retrieval.
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Applications and challenges

• Object pose estimation is a very challenging computer vision 

task.

• Heavily researched topic due to its importance in:
• Robotics.

• Augmented Reality.

• Challenges:
• Occlusion.

• Background clutter.

• Scale and illumination variations.
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Articulated object pose 
estimation

• There is a confusion on the use of terms pose and posture.

• Pose refers to the geometrical relation between an object

and a camera.

• Posture refers to the spatial configuration of an articulated

object.

• Human body posture estimation methods aim to estimate

joint 2D or 3D coordinates (or the related angles).

• Popular human pose/posture estimation methods:

• OpenPose, DensePose.
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Articulated object pose 
estimation

• It is a different problem than object pose estimation.

• Joint angle estimation for the various joints.

• Human Pose Estimation.

OpenPose. DensePose. 3D human pose.
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Object pose estimation

• 3D Object Pose Estimation.

• 3D Rotation matrix estimation.

• Object orientation in a camera coordinate system.

• Challenging computer vision task.

• Sub-case of 6D Object Pose Estimation.



• Special case of object pose estimation.

• Important in human-centered computing.

• Facial Pose Estimation (regression)

• Facial Pose Classification (e.g., frontal, side pose).

Facial Pose Estimation



Facial Pose Datasets

• Two datasets used for evaluating the proposed method:

• Annotated Facial Landmarks in the Wild dataset (AFLW):
• Continuous horizontal pose annotations.



Facial Pose Datasets

• Head Pose Image Dataset (HPID)

• 13 discrete horizontal pose annotations



3D rotation representations

• An arbitrary rotation in the 3D space can 

be represented by the Euler rotation 

angles 𝜃, 𝜓, 𝜙 about the 𝑋, 𝑌, 𝑍 axes.
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3D rotation representations

• Matrix representation of clockwise rotation about each 𝑋, 𝑌, 𝑍 axis:

𝐑 = 𝐑𝑧𝐑𝑦𝐑𝑥 =

cos𝜙 cos𝜓 cos𝜙 sin𝜓 sin 𝜃 − sin𝜙 cos 𝜃 cos𝜙 sin𝜓 cos 𝜃 + sin𝜙 sin 𝜃
sin𝜙 cos𝜓 sin𝜙 sin𝜓 sin 𝜃 + cos𝜙 cos 𝜃 sin𝜙 sin𝜓 cos 𝜃 − cos𝜙 sin 𝜃
− sin𝜓 cos𝜓 sin 𝜃 cos𝜓 cos 𝜃

𝐑𝑥 =
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

𝐑𝑦 =
cos𝜓 0 sin𝜓
0 1 0

−sin𝜓 0 cos𝜓
𝐑𝑧 =

cos𝜙 −sin𝜙 0
sin𝜙 cos𝜙 0
0 0 1

• The order of matrices in this equation does matter.
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3D rotation representations

• 3D rotation can also be represented by quaternions that are

extensions of complex numbers:

𝐪 = 𝑞0 + 𝑞1𝐢 + 𝑞2𝐣 + 𝑞3𝐤

𝑞0, 𝑞1, 𝑞2, 𝑞3 are real numbers and:

𝐢2 = 𝐣2 = 𝐤2 = 𝐢𝐣𝐤 = −1

• Unit quaternion 𝐪𝑅 = 𝑞0 𝑞1 𝑞2 𝑞3
𝑇 . It satisfies:

𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 = 1.
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6D object pose estimation

• Estimate object coordinate system orientation and

translation relative to the camera coordinate system.

• Object orientation is usually represented by a rotation

matrix 𝐑 ∈ ℝ3×3, where:

𝐑 =

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

.

• Object translation is estimated in the form of a translation

vector 𝐓 ∈ ℝ3, 𝐓 = [𝑇𝑋, 𝑇𝑌, 𝑇𝑍]
𝑇 .
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6D object pose estimation
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Object Pose Estimation

• Introduction

• 6D object pose estimation through object detection

• 3D object pose regression.

• 3D object pose classification.

• 3D object pose retrieval.



• Machine Learning Approach
• A neural network receives the object image and directly regresses

its pose.

• Only a set of pose-annotated object pictures are needed:
• There is no need to manually develop 3-D models.

• The models are more robust to variations of the object for which we want to

estimate its pose.

• The pose estimation can run entirely on GPU and (possibly) incorporated

into a unified detection+pose estimation neural network.

• Very few pre-trained models are available:
• Models must be trained for the objects of interest (faces, bicycles, boats,

etc.).

DNN Regression for 
Object Pose Estimation
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6D object pose estimation 
using deep object detection

Object detection. Segmentation.
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6D object pose estimation 
using deep object detection

• The 2D object detections are given as inputs to the pose

estimation step.

• Given:

• the camera intrinsic parameters,

• the 3D coordinates of the object predefined keypoints or

bounding box corners in the object coordinate system,

• the 6D object pose is calculated from the correspondences

between the 2D and 3D points using a Perspective-n-Point

(PnP) algorithm.
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6D object pose estimation 
using deep object detection

6D object pose estimation with 2D keypoint detection.
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Object Pose Estimation

• Introduction

• 6D object pose estimation through object detection

• 3D object pose regression.

• 3D object pose classification.

• 3D object pose retrieval.
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3D object pose estimation

• Many CNN-based methods have been proposed for the 3D 

object pose estimation step. 

• Main method categories:

• 3D object pose regression.

• 3D object pose classification.

• 3D object pose retrieval.
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3D object pose regression

• Given an image 𝐱 depicting an object at a specific 3D pose,

3D object pose regression methods aim to directly regress

its 3D pose 𝐩 through a simple CNN forward pass:

ෝ𝐩 = 𝒇 𝐱; 𝛉 ,

• 𝒇 𝐱; 𝛉 : CNN having parameter vector 𝛉.

• Pre-trained CNNs or a separate CNN for each object of

interest are required.

• 3D object pose predictions lack increased accuracy.
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3D object pose classification

• The continuous 3D pose space is quantized to a predefined

number of orientation classes 𝐩𝑖.

• Similar to 3D object pose regression, 3D object pose

classification methods aim to classify an object image 𝐱 to

its orientation class 𝐩𝑖 through a simple network pass:

ෝ𝐩𝑖 = 𝒇 𝐱; 𝛉 .

• Pre-trained CNNs or a separate CNN for each object of

interest are also required.

• Increased accuracy relative to regression methods.
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3D object pose retrieval

• These methods aim to extract 3D pose-related image

features using CNNs.

• A codebook is constructed, consisting of images depicting

objects at a predefined number of different 3D poses that

cover the 3D pose space.

• The 3D object pose is estimated by matching a test object

image with the most similar codebook image and returning

its corresponding ground truth 3D pose.
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Object Pose Estimation

• Introduction

• 6D object pose estimation through object detection

• 3D object pose regression.

• 3D object pose classification.

• 3D object pose retrieval.
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3D object pose retrieval
• A CNN is trained to extract 3D pose-related features.

• Using the trained CNN, codebook features 𝐟𝑐𝑖 , 𝑖 =

1,… ,𝑚 are first calculated offline and stored:

𝐟𝑐𝑖 = 𝒇 𝐱𝑐𝑖; 𝛉 .

• Given a test object image 𝐱 , the corresponding feature

vector is extracted using the same trained CNN:

𝐟 = 𝒇 𝐱; 𝛉 .

• The extracted test image feature vector 𝐟 is matched to the

most similar 𝐟𝑐𝑖 , 𝑖 = 1, … ,𝑚 using a matching algorithm

(Nearest Neighbor) and the corresponding ground truth 3D

pose is returned as the 3D pose estimate.
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Learning 3D pose features 
using autoencoders

Training. Testing.
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• Distance metric between two rotation matrices 𝐑𝑖 , 𝐑𝑗:

𝑑 𝐑𝑖 , 𝐑𝑗 = log(𝐑𝑖
𝑇𝐑𝑗) 2

.

Different quaternion distance metrics were investigated to 

find the one the best resembles 𝑑 𝐑𝑖 , 𝐑𝑗 .

• Squared Euclidean distance: 𝑑𝐸 = 𝐪𝑖 − 𝐪𝑗 2

2
.

• Full angle Quaternion distance: 𝑑𝐶 = 𝐪𝑓𝑎𝑞𝑖 − 𝐪𝑓𝑎𝑞𝑗 2

2
.

• Inverse cosine distance:  𝑑𝐼𝐶 = 2arccos(|𝐪𝑖
𝑇𝐪𝑗|).

Quaternion learning for 
3D object pose estimation
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• The inverse cosine distance was selected as it has a

linear relationship with 𝑑 𝐑𝑖 , 𝐑𝑗 .

Quaternion learning for 
3D object pose estimation
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Quaternion learning for 
3D object pose estimation
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• Objective loss function:

𝐽 = 𝐽𝑑𝑒𝑠𝑐 + 𝐽𝑞𝑟𝑒𝑔 + 𝜆 𝑤 2
2.

• Error 𝐽𝑑𝑒𝑠𝑐 aims to learn pose features from object

images:

𝐽𝑑𝑒𝑠𝑐 = 𝐽𝑝 + 𝐽𝑜.

• Pairwise loss between images of the same object:

𝐽𝑝 = ෍

𝑠𝑖,𝑠𝑗

{ 𝐟𝑖 − 𝐟𝑗 2

2
− 2arccos(|𝐪𝑖

𝑇𝐪𝑗|)}
2.

Quaternion learning for 
3D object pose estimation
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• Triplet loss between images of the same object and an

image of a different object:

𝐽𝑜 = ෍

𝑠𝑖,𝑠𝑗,𝑠𝑘

𝐟𝑖 − 𝐟𝑗 2

𝐟𝑖 − 𝐟𝑘 2 + 𝜀
.

• Quaternion regression loss:

𝐽𝑞𝑟𝑒𝑔 = 𝐪 − ෝ𝐪 2
2.

Quaternion learning for 
3D object pose estimation
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• Visualization of the learned features for 5 random 

objects from the LineMod dataset.

Quaternion learning for 
3D object pose estimation
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• 5 retrieved templates that are closest to the test image 

in the feature space.

Quaternion learning for 
3D object pose estimation
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• 5 retrieved templates that are closest to real cyclist test 

images.

Quaternion learning for 
3D object pose estimation
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• Image-to-image translation step to translate real images

to synthetic ones.

• Pose estimation step applied on the translated synthetic

images.

• Translated synthetic images are clear from redundant

noise.

• 3D poses can be more accurately predicted from the

noise-free translated images.

Domain-translated object 
pose estimation
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Domain-translated object 
pose estimation
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• 5 retrieved templates that are closest to real 

cyclist test images.

Domain-translated object 
pose estimation
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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