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Introduction @ML

* Autonomous/robotic systems (e.g., autonomous cars,
drones, etc.) are characterized by their ability to navigate an
area on their own, by exploiting sensor data acquired on-
the-fly and Al algorithms.

« Knowing the geometry and semantics of a depicted
scene/object Is a prerequisite for understanding its
surroundings and thus, safely navigate therein.
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Introduction @ML

 Traditionally, scene geometry was directly sampled using 3D
sensors, such as LIDARSs.

« Estimation of the underlying scene semantics was limited to object
detection with handcrafted features.

* Recently, Deep Neural Networks (DNNs) enabled accurate scene
geometry and semantics estimation, using visual sensors only, such
as RGB or RGB-D cameras.
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Classification/Recognition/ C\ZML
ldentification

« Given asetofclassesC =1{C;, i =1,...,m} and a sample x € R", the ML
model §y = f(x;0) predicts a class label vector § € [0,1]™ for input
sample x, where 0 are the learnable model parameters.

« Essentially, a probabillistic distribution P(y; x) is computed.
« Interpretation: likelihood of the given sample x belonging to each class C;.

« . Single-target classification:

« Classes C;,i = 1, ..., m are mutually exclusive: |[|y||; = 1.
Multi-target classification:

« Classes G;,i = 1,...,m are not mutually exclusive: |[|y||, = 1.
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Supervised Learning C\ZML

A sufficient large training sample set D is required for Supervised
Learning (regression, classification):

D = {(Xi,yl‘),i = 1, ,N}

« X; €R": n-dimensional input (feature) vector of the i-th training
sample.
e ;. Its target label (output).
« Target form y can vary:
e |t can be categorical, a real number or a combination of both.
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Classification/Recognition/ C\ZML
ldentification

 Training: Given N pairs of training samples D = {(x;,y;),i =1,...N},
where x; € R" and y; € 0,1], estimate 6 by minimizing a loss
function: r%in J(v,¥).

» Inference/testing. Given N, pairs of testing examples D; = {(x;,y;),i =
1,..,N;}, where x; € R" and y; € [0,1]™, compute (predict) y; and
calculate a performance metric, e.g., classification accuracy.
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Regression @ML

Given a sample x € R" and a function y = f(x), the model predicts real-
valued quantities for that sample: y = f(x;0), where y € R™ and 0 are the
learnable parameters of the model.

 Training: Given N pairs of training examples D = {(x;,y;),i = 1,...N},
where x; € R" and y; € R™, estimate 8 by minimizing a loss function:
min/(y,y).

 Testing: Given N; pairs of testing examples D; = {(x;,¥;),i = 1, ..., N;},

where x; € R" and y; € y; € R™, compute (predict) y; and calculate a
performance metric, e.g., MSE.
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Semantic Image SegmentatlonCM"

« CNN Semantic Image
segmentation typically uses a
cascade of an encoding and a
decoding subnetwork.

* The final output of the decoder is

a semantic image map, having:
« same spatial resolution as the
iInput and
« as many channels as the object
class number.
« Per-pixel image classification Is
performed.
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Disparity/Depth Estimation @ML
with NNs

Disparity/Depth estimation using Neural Networks (NN) can be
divided into four categories:

* NNs for stereo image pair patch matching.

* NN computation of the dense disparity (or depth) map
directly from stereo image pairs (without any explicit feature
matching).

* Monocular supervised disparity/depth estimation.

» Unsupervised NN disparity/depth estimation methods.

Artificial Intelligen
Informatio AIyLb



9®

Disparity/Depth map
Estimation with NNs

CNN architecture for patch comparison [ZB0O2015]:
« CNN is trained to predict how well two image patches
match and use it to compute the stereo matching cost:

SAD(p,d) = ) Ifi(@) — fi(q — ).

qeN,
* f1(p), f~(p): image intensitipes at position p in the left and
right image.
* N, : image neighborhood at pixel p.
- d = [d, 0]": stereo disparity.
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Disparity/Depth map C\ZML
Estimation with NNs

* Next, image f, is warped to form an approximation f'; of f,
such that:

fitp) = f1,(py) = f-(py).

i Left Image Predicted Inverse Depth
(%) Deep CHI D(x) = fB/d(x)

I
3 IL,(x) - L)l
< Lu(®) = L(x+D(x)) ,

Warp Image Right Image I,(x)
L,(x)
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Disparity/Depth map C\ZML
Estimation with NNs

* Then, the photometric loss function J,, is minimized for optimal
depth estimation:

> i) - 00 I

P1LPr€EX

Jv

« X:Iimage domain.

« During DNN training using stereo image pairs, DNN learns to estimate
D(p;), by minimizing J,,.

« During testing, a monocular image f(p) Is fed to DNN to produce the
desired depth map D.
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Disparity/Depth map C\ZML
Estimation with NNs

* Then the photometric loss function is computed:

@)= Y @) — fPren+ DI

PrnPn+1€X
* The two DNNs are trained to minimize J,,.

« During testing, a monocular image f(p,n’) is fed to the
depth estimation DNN to produce the desired depth map
D.
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Disparity/Depth map
Estimation with NNs

(a) Training: unlabeled video clips.

Depth CNN

Target view

(b) Testing: single-view depth and multi-view pose estimation.
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Disparity/Depth map @ML
Estimation with NNSs
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Dep th Image from monocular video [APOLLO].
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Point Cloud Generation @ML

« CNNSs (U-nets in particular) can generate 3D point cloud
coordinates, Iif given a single image as input [FAN2017].
 The encoder predicts embeddings from the image and a
random vector to perturb the prediction (inspired from
GANS).

 The predictor outputs a N x3 (N = 1024) coordinate
maitrix having entries [X;,Y;,Z;], i =1, ..., N.
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3D Surface Mesh Estimation @ML

 Triangular meshes can also be inferred from single
Images.
* An effective way [WANZ2018] is to:

« progressively deform 3D object mesh using a Graph CNN,
starting from trivial mesh, e.g., an ellipsoid;

 produce the mesh that corresponds to the depicted object, by
directly inferring mesh (graph) coordinates.

« The 3D mesh can also be formulated as a set of
deformable 2D squares that covers a point cloud

QO el GRO2018].
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3D Volumetric Model
Estimation

 Voxel grid object representations
can be generated given a single-
view depth map, multiview images or
a single image as input.

« Suitable networks: 3D  CNNSs
|[GAL2017], 3D Recurrent Neural
Networks [CHO2016].

« For higher resolution, without further
memory needs, octree object
representations have been explored

olor: LRG.EZON]

3D object octtree.
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Joint 3D Scene Geometry and C\ZML
Semantics Estimation

« Semantic image segmentation and 3D geometry
estimation are highly correlated tasks.

« Simultaneous execution of both tasks allows the creation
of a semantic 3D map.

* Further gains:

Accuracy:. the two tasks can reinforce one another.
Speed: possible use of common computational modules (e.qg.

common image feature extractors) instead of totally separate
networks.
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Joint 3D Scene Geometry and @ML
Semantics Estimation

Typical multitask networks have:
« Common input X.
« Common feature extraction operator F.
e mconcurrent task operators:
T;,.., T, n=2.

 The multitask network output is the set:

T ={T(FX)), ..., T,(F(X))}.

E) | | TE)
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Joint 3D Scene Geometry and C\ZML

Semantics Estimation

* CNN-predicted dense depth maps .. ...
can be fused together with depth i
measurements directly obtained from ==
monocular SLAM [TAT2017]. .

« CNN-predicted semantic [
segmentation can be coherently fused
with the global 3D scene model.

« It.can overcome problems, such as oy K .
good estimation of the absolute scale, (©) . Tkt 3D and Semmaniic Raconstructon
depth prediction In texture-less areas,
etc.
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Joint 3D Scene Geometry and @ML
Semantics Estimation

Neural depth |mage estimation and semantic image segmentation [APOLLO].
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Semantic 3D World Maps

Semantic octomap [ZHA2018].
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Sources: 2D maps

VML

* Google Maps. I
« OpenStreetMaps.
« Semantic annotated information: Ooert of nformatics

* (roads, POls, landing sites) in KML format in e,

Google Maps. %,,-,/%

e roads in OSM (XML) -in_case of

OpenStreetMaps. viane ©
Aristotle

« Google Maps JavaScript API. ol b
» OpenStreetMaps API. AN oo
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Sources: 3D maps VML

Octree map (Octomap) of outdoor environment
at 0.2 m resolution. Freiburg campus dataset [HOR2013].

* Formats: Py
« 3D triangle mesh. L,
» 3D Octomap. =
" Octomap: SRR B

« The Octomap is a fully 3D model representing the 3D environment, where the
UAV navigates.

* |t provides a volumetric representation of space, namely of the occupied, free
and unknown areas.

It is based on octrees and using probabilistic occupancy estimation.
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Semantic Map Annotation

types (navigation/logistics)

Geometric entity

Type Static/dynamic Who How type
Regylar t.a keoff and Static Supervisor Manually Point
landing sites
Manually or Polygon (2D
No flight zones Static Supervisor imported froma | coordinates,
file, if available longitude- latitude)
Pote_ntlal_emergency Static Supervisor Manually Polygon
landing sites
_ : Visual Semantic Polygon (2D
Crowd gathering areas Dynamic, during Al Automatically coordinates
production Semantic map X =
longitude- latitude)
manager
Points of interest Static Manually Point

Artificial Intelligence &
Information Analysis Lab
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Semantic information C\ZML
structure

 Static semantic information:

* Roads, POls, no-flight zones, private areas.
* Dynamic semantic information:

* Crowd locations.
« KML format.
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Semantic Map Annotation types C\ZML
(static: navigation/logistics)

o Static annotations are stored in KML file available from a ROS service
In ROS node Semantic Map Manager:

<?xml version="1.0" encoding="UTF-8"?>
<kml xmIns="http://www.opengis.net/kml/2.2">
<Document>
<name>KML STRUCTURE</name>
<Folder>
<name>Annotations</name>
<Placemark>
<name>1
</name>
<address>1.1</address>
<description> Landing Site/Regular Takeoff Site (re-charging/ relay-stations)</description>
<Point>
<coordinates>
22.9662323,40.6832416,0
</coordinates>
</Point>
</Placemark>

</kml>
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Projection of crowd location CML
onto the 3D map
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Semantic 3D Mesh Map
Annotation
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Scalability of semantic map (VML
manager

» Total Processing Time of SMM .5 ___ exploiting the circular buffer
nodes

« as the circular buffer is being filled
In the first 2500 frames the total
duration of time processing is
iIncreased and

« when it is filled, the processing time
Is being stable with a mean value
around 3.5msec.

Total Time of frame processing{msec)

1.5

0 500 1000 1500 2000 2500 3000 3500
total processed frames
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Scalability of semantic map CML

manager

* Storage of the respective so —Number of polygons In the circular buffer
2D polygons N |
 Number of polygons in the |
circular buffer capacity 10 }

equals to 60 polygons

Number of Polygons
Lk
=

I

=t
[

=

] 500 1000 1500 2000 2500 3000 3500
frames
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Q&A (UL

Thank you very much for your attention!

More material/lectures in
http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. |. Pitas
pitas@csd.auth.gr
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