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Introduction

• Autonomous/robotic systems (e.g., autonomous cars,

drones, etc.) are characterized by their ability to navigate an

area on their own, by exploiting sensor data acquired on-

the-fly and AI algorithms.

• Knowing the geometry and semantics of a depicted

scene/object is a prerequisite for understanding its

surroundings and thus, safely navigate therein.



Introduction
• Traditionally, scene geometry was directly sampled using 3D

sensors, such as LiDARs.

• Estimation of the underlying scene semantics was limited to object

detection with handcrafted features.

• Recently, Deep Neural Networks (DNNs) enabled accurate scene

geometry and semantics estimation, using visual sensors only, such

as RGB or RGB-D cameras.



Classification/Recognition/

Identification
• Given a set of classes 𝒞 = 𝒞𝑖 , 𝑖 = 1,… ,𝑚 and a sample 𝐱 ∈ ℝ𝑛, the ML

model ො𝐲 = 𝒇(𝐱; 𝛉) predicts a class label vector ො𝐲 ∈ 0, 1 𝑚 for input

sample 𝐱, where 𝛉 are the learnable model parameters.

• Essentially, a probabilistic distribution 𝑃(ො𝐲; 𝐱) is computed.

• Interpretation: likelihood of the given sample 𝐱 belonging to each class 𝒞𝑖 .

• Single-target classification:

• Classes 𝒞𝑖 , 𝑖 = 1,… ,𝑚 are mutually exclusive: ||ො𝐲||1 = 1.

• Multi-target classification:

• Classes 𝒞𝑖 , 𝑖 = 1,… ,𝑚 are not mutually exclusive: ||ො𝐲||1 ≥ 1.



Supervised Learning

• A sufficient large training sample set 𝒟 is required for Supervised

Learning (regression, classification):

𝒟 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1,… ,𝑁}.

• 𝐱𝑖 ∈ ℝ𝑛 : 𝑛 –dimensional input (feature) vector of the 𝑖-th training

sample.

• 𝐲𝑖: its target label (output).

• Target form 𝐲 can vary:

• it can be categorical, a real number or a combination of both.



Classification/Recognition/

Identification
• Training: Given 𝑁 pairs of training samples 𝒟 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1,…𝑁},

where 𝐱𝑖 ∈ ℝ𝑛 and 𝐲𝑖 ∈ 0,1 𝑚, estimate 𝛉 by minimizing a loss

function: min
𝛉

𝐽(𝐲, ො𝐲).

• Inference/testing: Given 𝑁𝑡 pairs of testing examples 𝒟𝑡 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 =
1,… ,𝑁𝑡} , where 𝐱𝑖 ∈ ℝ𝑛 and 𝐲𝑖 ∈ 0,1 𝑚, compute (predict) ො𝐲𝑖 and

calculate a performance metric, e.g., classification accuracy.



Regression

Given a sample 𝐱 ∈ ℝ𝑛 and a function 𝐲 = 𝒇(𝐱), the model predicts real-

valued quantities for that sample: ො𝐲 = 𝒇(𝐱; 𝛉), where ො𝐲 ∈ ℝ𝑚 and 𝛉 are the

learnable parameters of the model.

• Training: Given 𝑁 pairs of training examples 𝒟 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1,…𝑁},
where 𝐱𝑖 ∈ ℝ𝑛 and 𝐲𝑖 ∈ ℝ𝑚, estimate 𝛉 by minimizing a loss function:

min
𝛉

𝐽(𝐲, ො𝐲) .

• Testing: Given 𝑁𝑡 pairs of testing examples 𝒟𝑡 = {(𝐱𝑖 , 𝐲𝑖), 𝑖 = 1,… ,𝑁𝑡},
where 𝐱𝑖 ∈ ℝ𝑛 and 𝐲𝑖 ∈ 𝐲𝑖 ∈ ℝ𝑚, compute (predict) ො𝐲𝑖 and calculate a

performance metric, e.g., MSE.



Semantic Image Segmentation
• CNN Semantic image

segmentation typically uses a

cascade of an encoding and a

decoding subnetwork.

• The final output of the decoder is

a semantic image map, having:
• same spatial resolution as the

input and

• as many channels as the object

class number.

• Per-pixel image classification is

performed.



Disparity/Depth estimation using Νeural Νetworks (NN) can be

divided into four categories:

• NNs for stereo image pair patch matching.

• NN computation of the dense disparity (or depth) map

directly from stereo image pairs (without any explicit feature

matching).

• Monocular supervised disparity/depth estimation.

• Unsupervised NN disparity/depth estimation methods.

Disparity/Depth Estimation 
with NNs



CNN architecture for patch comparison [ZBO2015]:

• CNN is trained to predict how well two image patches

match and use it to compute the stereo matching cost:

𝑆𝐴𝐷 𝐩, 𝐝 = ෍

𝐪∈𝒩𝐩

𝑓𝑙 𝐪 − 𝑓𝑟 𝐪 − 𝐝 .

• 𝑓𝑙 𝐩 , 𝑓𝑟 𝐩 : image intensities at position 𝐩 in the left and

right image.

• 𝒩𝐩 : image neighborhood at pixel 𝐩.

• 𝐝 = [𝑑, 0]𝑇: stereo disparity.

Disparity/Depth map 
Estimation with NNs

[ZBO2015]



• Next, image 𝑓𝑟 is warped to form an approximation 𝑓′𝑙 of 𝑓𝑙,

such that:

𝑓𝑙 𝐩𝑙 ≈ 𝑓′
𝑙
𝐩𝑙 = 𝑓𝑟 𝐩𝑟 .

Disparity/Depth map 
Estimation with NNs



• Then, the photometric loss function 𝐽𝑝 is minimized for optimal

depth estimation:

𝐽𝑝 = ෍

𝐩𝑙,𝐩𝑟∈𝒳

‖𝑓𝑙 𝐩𝑙 − 𝑓𝑟(𝐩𝑟) ‖
2.

• 𝒳: image domain.

• During DNN training using stereo image pairs, DNN learns to estimate

𝐷 𝐩𝑙 , by minimizing 𝐽𝑝.

• During testing, a monocular image 𝑓(𝐩) is fed to DNN to produce the

desired depth map 𝐃.

Disparity/Depth map 
Estimation with NNs



• Then the photometric loss function is computed:

𝐽𝑝(𝑛) = ෍

𝐩𝑛,𝐩𝑛+1∈𝒳

‖𝑓 𝐩𝑛, 𝑛 − 𝑓 𝐩𝑛+1, 𝑛 + 1 ‖2.

• The two DNNs are trained to minimize 𝐽𝑝.

• During testing, a monocular image 𝑓(𝐩, 𝑛′) is fed to the

depth estimation DNN to produce the desired depth map

𝐃.

Disparity/Depth map 
Estimation with NNs



Disparity/Depth map 
Estimation with NNs

Depth and pose estimation DNNs.



Depth image from monocular video [APOLLO].
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Disparity/Depth map 
Estimation with NNs



Point Cloud Generation

• CNNs (U-nets in particular) can generate 3D point cloud

coordinates, if given a single image as input [FAN2017].

• The encoder predicts embeddings from the image and a

random vector to perturb the prediction (inspired from

GANs).

• The predictor outputs a 𝑁 × 3 (𝑁 = 1024 ) coordinate

matrix having entries 𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖 , 𝑖 = 1, … , 𝑁.



3D Surface Mesh Estimation

• Triangular meshes can also be inferred from single

images.

• An effective way [WAN2018] is to:

• progressively deform 3D object mesh using a Graph CNN,

starting from trivial mesh, e.g., an ellipsoid;

• produce the mesh that corresponds to the depicted object, by

directly inferring mesh (graph) coordinates.

• The 3D mesh can also be formulated as a set of

deformable 2D squares that covers a point cloud

[GRO2018].



3D Volumetric Model 
Estimation
• Voxel grid object representations

can be generated given a single-

view depth map, multiview images or

a single image as input.

• Suitable networks: 3D CNNs

[GAL2017], 3D Recurrent Neural

Networks [CHO2016].

• For higher resolution, without further

memory needs, octree object

representations have been explored

[RIE2017].

3D object octtree.
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Joint 3D Scene Geometry and 
Semantics Estimation

• Semantic image segmentation and 3D geometry

estimation are highly correlated tasks.

• Simultaneous execution of both tasks allows the creation

of a semantic 3D map.

• Further gains:
• Accuracy: the two tasks can reinforce one another.

• Speed: possible use of common computational modules (e.g.

common image feature extractors) instead of totally separate

networks.



Joint 3D Scene Geometry and 
Semantics Estimation

Typical multitask networks have:

• Common input 𝐗.

• Common feature extraction operator 𝐅.

• 𝑛 concurrent task operators:

𝐓1, … , 𝐓𝑛, 𝑛 ≥ 2.

• The multitask network output is the set:

𝒯 = 𝐓1 𝐅 𝐗 ,… , 𝐓𝑛 𝐅 𝐗 .



Joint 3D Scene Geometry and 
Semantics Estimation

• CNN-predicted dense depth maps

can be fused together with depth

measurements directly obtained from

monocular SLAM [TAT2017].

• CNN-predicted semantic

segmentation can be coherently fused

with the global 3D scene model.

• It can overcome problems, such as

good estimation of the absolute scale,

depth prediction in texture-less areas,

etc.



Joint 3D Scene Geometry and 
Semantics Estimation

Neural depth image estimation and semantic image segmentation [APOLLO].
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Semantic 3D World Maps

Semantic octomap [ZHA2018].
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Sources: 2D maps

• Google Maps.

• OpenStreetMaps.

• Semantic annotated information:

• (roads, POIs, landing sites) in KML format in

Google Maps.

• roads in OSM (XML) in case of

OpenStreetMaps.

• Google Maps JavaScript API.

• OpenStreetMaps API.
Google Maps



Sources: 3D maps

• Formats:

• 3D triangle mesh.

• 3D Octomap.

• Octomap :

• The Octomap is a fully 3D model representing the 3D environment, where the 

UAV navigates. 

• It provides a volumetric representation of space, namely of the occupied, free 

and unknown areas. 

• It is based on octrees and using probabilistic occupancy estimation.

Octree map (Octomap) of outdoor environment
at 0.2 m resolution. Freiburg campus dataset [HOR2013].



Semantic Map Annotation 
types (navigation/logistics)

Type Static/dynamic Who How
Geometric entity 

type

Regular takeoff and 

landing sites
Static Supervisor Manually Point

No flight zones Static Supervisor

Manually or 

imported from a 

file, if available

Polygon (2D 

coordinates, 

longitude- latitude)

Potential emergency 

landing sites
Static Supervisor Manually Polygon 

Crowd gathering areas
Dynamic, during 

production

Visual Semantic 

annotator, 

Semantic map 

manager

Automatically

Polygon (2D 

coordinates, 

longitude- latitude)

Points of interest Static Manually Point



Semantic information 
structure

• Static semantic information:

• Roads, POIs, no-flight zones, private areas.

• Dynamic semantic information:

• Crowd locations.

• KML format.



Semantic Map Annotation types 
(static: navigation/logistics)
• Static annotations are stored in KML file available from a ROS service 

in ROS node Semantic Map Manager:
<?xml version="1.0" encoding="UTF-8"?>

<kml xmlns="http://www.opengis.net/kml/2.2">

<Document>

<name>KML STRUCTURE</name>

<Folder>

<name>Annotations</name>

<Placemark>

<name>1

</name>

<address>1.1</address>

<description> Landing Site/Regular Takeoff Site (re-charging/ relay stations)</description>

<Point>

<coordinates>

22.9662323,40.6832416,0

</coordinates>

</Point>

</Placemark>

….

</kml>



Projection of crowd location 
onto the 3D map



Semantic 3D Mesh Map 
Annotation



• Total Processing Time of SMM 

nodes

• as the circular buffer is being filled 

in the first 2500 frames the total 

duration of time processing is 

increased and

• when it is filled, the processing time 

is being stable with a mean value 

around 3.5msec.

Scalability of semantic map 
manager 



• Storage of the respective 

2D polygons 
• Number of polygons in the 

circular buffer capacity 

equals to 60 polygons

Scalability of semantic map 
manager 
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Q & A

Thank you very much for your attention!

More material/lectures in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas

pitas@csd.auth.gr

90


