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The Body of the Neurons

Neuron body [BIG2019].
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Action Potential

Action Potential [BIG2019].
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Glia

• The second type of cells found in the brain.

• They are the caretakers of the neurons.

• Unlike neurons, they cannot transmit information.

• Depending on their job they are separated into four 

categories.

• Their actual number is unknown. Estimations range from a 

50: 1 to a 1: 4.3 glia to neurons ratio.
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Anatomy of the Brain

• The brain is separated into three major regions.

• The Cerebrum is the largest of the three and it is 

responsible for all the complicated processes of the brain.

• The Cerebellum controls the movement of the muscles and 

the balance.

• The Brain Stem is the intermediary between the spinal cord 

and the brain, and controls the subconscious functions of 

the body.
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Anatomy of the Brain

The three parts of the brain [WIL2012].
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The Lobes of the Brain
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The four lobes of the brain(from [BIG2019]).



Deep Structures of the Brain

Diencephalon [BIG2019].
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The Brain Stem

• It is made up of three 

regions:

• The Midbrain

• The Pons

• The Medulla
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Brain Stem [BIG2019].
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Vision

• The human eye is made up of three layers.

• The outermost is the fibrous tunic.

• It contains the sclera, the white of the eye, and the

cornea, which covers the front of the eye

• The vascular tunic is the middle layer.

• It is composed of the choroid, the blood supplier of the

eye, the ciliary body, responsible for bending the lens,

and the iris, the colored part of the eye.
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Vision

The Human Eye(from [BIG2019]).
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Hearing

Ear structure [BIG2019].
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Taste

• There are four basic tastes:

sweet, salty, sour, and bitter.

• Researchers suggest that

there may additionally two

others:

• one for fats and one for

deliciousness.

• Tastes are sensed by tongue

papillae.
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Tongue papillae [BIG2019].



Smell

• It is perceived by olfactory receptor neurons in the upper

part of the nose, known as the olfactory epithelium.

• The proteins that make up smells bind with mucus and are

received by these neurons.

• Smell information is sent directly to the frontal lobe.

• From there it is dispersed to cerebrum, limbic system and

hypothalamus.

• In the latter two ones, it can and will be associated with

long-term memories.
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Touch

• All skin layers have various receptors that are able to

sense not only touch, but also temperature and pain.

• Fingers have the highest density of such receptors.

• This explains why they are the most sensitive part of the

body to touch.

• Together with the rest of the tactile senses, touch signals

are processed in the parietal lobe.
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Neuroimaging

• Since communication in the brain is facilitated through 

electrical pulses, their detection allows us to see and map 

its activities.

• These pulses can be detected through various methods, 

that are generally separated into two categories:

• Invasive Techniques require the removal of part of the skull in 

order to put sensors directly to the brain.

• Noninvasive Techniques have their sensors put on the subject’s 

scalp.
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Noninvasive Techniques
• Electroencephalography (EEG).

• Uses a cap of electrodes in the scalp that capture the

brain’s electrical signals

• Good temporal but bad spatial resolution.
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Noninvasive Techniques

• Positron Emission Tomography (PET).

• Measures the emissions from radioactive chemicals that were 

injected to the subjects bloodstream

• Good spatial resolution, bad temporal.

• Functional magnetic resonance imaging (fMRI).

• Measures the changes in the blood flow of the brain in order to 

detect what areas show high activity.

• Very good spatial resolution, bad temporal.

• The subject needs to lie down with the head inside a scanner.
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Noninvasive Techniques

Diffusion Tensor Imaging of White matter fiber architecture [HUM].
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Brain Stimulation

• A subject growing in interest, especially in the field of brain-

computer interfaces.

• It involves artificially stimulating the brain to:

• Perform actions without thinking or wanting them.

• Sense things it is not actually sensing.

• Invasive stimulation techniques use electrodes to shock 

the neurons and activate them.

• Noninvasive stimulation is performed through either 

magnetic fields or ultrasounds directed at the brain. 
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Artificial Neurons

• They are attempts at mimicking the structure and function of

the human brain.

• Originally created as single node networks, they have

evolved into complicated multilayered neural networks.

• A fundamental part of machine learning, they can be used

for supervised, unsupervised and reinforcement learning.
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Perceptron

• The simplest neuron model is the perceptron.

• It is an evolution of the McCulloch-Pitt model as it includes a

bias component.

• For a collection of inputs 𝑥𝑖 , 𝑖 = 1, … ,𝑁, perceptron weights

𝑤𝑖 , 𝑖 = 1, … , 𝑁 and a bias 𝑏, perceptron output is given by

[KAW2000]:

𝑦 = 𝑓 𝐰𝑇𝐱 + 𝑏 = 𝑓 

𝑖=1

𝑁

𝑤𝑖𝑥𝑖 + 𝑏 .
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Perceptron

• Learning is achieved by adjusting perceptron weights, in

order to match the input to the training target.

• The transfer or activation function 𝑓 can take various

forms:

• Sigmoid function: 𝑓 𝑥 =
1

1+𝑒−𝑥
.

• Rectifier function: 𝑓 𝑥 = max 0, 𝑥 .

• Sign function: 𝑓 𝑥 = ቐ

−1, 𝑖𝑓 𝑥 < 0
0, 𝑖𝑓 𝑥 = 0
1, 𝑖𝑓 𝑥 = 1

.
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Hopfield Network

Original Hopfield networks used binary neuron models instead 

of perceptrons.

• A vector 𝐯 describes the state of the network in each step.

• A neuron 𝑖 has activity 𝑣𝑖 and bias 𝑏𝑖 .

• The synapse from node 𝑗 to 𝑖 has a weight 𝑤𝑗𝑖.

• The input of 𝑖 is [HOP2007]:

𝑥𝑖 =

𝑗

𝑤𝑗𝑖𝑣𝑗 + 𝑏𝑖
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Hopfield Network

• If 𝑥𝑖 > 0 then 𝑣𝑖 = 1, otherwise 𝑣𝑖 = 0.

• The network updates, by doing this for every node.

• For the weights we consider that:

• Neurons do not connect with themselves 𝑤𝑖𝑖 = 0.

• The network is symmetric, 𝑤𝑖𝑗 = 𝑤𝑗𝑖.
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Brain Graphs

• They are a way of modeling the brain through the use of

graphs and graph theory.

• They are useful because:

• They allow us to see the brain’s structural, functional and causal 

organization.

• It is easier to compare the graphs of different brain mapping 

methods than the actual data.

• They make possible the comparison of networks formed through 

large and small scale analytics.
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Association and Adjacency 

Matrices

a)Association matrix, b) Adjacency matrix for 𝜅 = 0.15, c) 

Adjacency matrix for 𝜅 = 0.30 (from [BUL2011])
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Brain Graphs

• Most studies agree that the most commonly found

properties of the brain through the use of graphs are:

• Small-worldness.

• Modularity.

• Network hub structure.
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Visual Signals Propagation

Brain activation during passive stimuli(from [YOU2014]).
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Brain Speech Graphs

Brain speech graphs at rest and during speech 

production [SIM2015].
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Connectivity Across the Brain

Connectivity patterns of the left brain hemisphere [SEP2010].
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Brain Graphs and Subgraphs

The two graphs used[POW2011]).
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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