

Mathematical Analysis summary

P. Papageorgiou, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 3.0

Mathematical Analysis

- 1D/2D/3D Functions
- Differentiation
- Integration
- Partial differentiation
- Double integrals
- Optimization
- Fourier transforms

1D, 2D, 3D analog signals / functions

- 1D signals of the form $f(t): \mathbb{R} \to \mathbb{R}$
 - Speech, music.
- 2D signals of the form $f(x, y) : \mathbb{R}^2 \to \mathbb{R}$
 - Greyscale images.
- 3D signals of the form $f(x, y, z): \mathbb{R}^3 \to \mathbb{R}$
 - Video signals $f(x, y, t): \mathbb{R}^3 \to \mathbb{R}$

3D data types: video signal f(x, y, t)

(VML

1D, 2D, 3D discrete signals

- 1D signals of the form $f(n): \mathbb{Z} \to \mathbb{R}$
 - Digital speech, music
- 2D signals of the form $f(i,j): \mathbb{Z}^2 \to \mathbb{R}$
 - Digital greyscale images
- 3D signals of the
 - Volumetric images $f(i, j, k): \mathbb{Z}^3 \to \mathbb{R}$
 - Digital video signals $f(i, j, k): \mathbb{Z}^3 \to \mathbb{R}$

Mathematical Analysis

- 1D/2D/3D Functions
- Differentiation
- Integration
- Partial differentiation
- Double integrals
- Optimization
- Fourier transforms

1D Differentiation

- The derivative of a function at a specific point is the rate of change of function output with respect to its input.
- For 1D continuous functions, it is the slope of the tangent line to the function graph at that point:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Numerical Differentiation

Numerical Differentiation performs approximate differentiation, on discrete function values:

$$\widehat{f}'(x) = \frac{f(x + \Delta x) - f(x - \Delta x)}{2\Delta x}$$

• For small sampling step Δx , it is equal to the slope of a nearby secant line through the points $(x - \Delta x, f(x - \Delta x))$ and $(x + \Delta x, f(x + \Delta x))$.

Numerical Differentiation

- Numerical Differentiation is a high pass linear system:
- It amplifies high frequencies.
- It is sensitive to noise.

Function Minima

- Local and global minima.
- Derivate is zero at function minima and maxima.

Mathematical Analysis

- 1D/2D/3D Functions
- Differentiation
- Integration
- Partial differentiation
- Double integrals
- Optimization
- Fourier transforms

Integration

- Integration is the reverse of differentiation.
- *Indefinite integral* for a function f(x):

$$\int f(x)dx = F(x) + c.$$

- Fundamental theorem of calculus.
- **Definite integral** in the interval [a, b]:

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

• Definite integrals is the area under a function curve for the interval [*a*, *b*].

Mathematical Analysis

- 1D/2D/3D Functions
- Differentiation
- Integration
- Partial differentiation
- Double integrals
- Optimization
- Fourier transforms

Partial Differentiation

- A *partial derivative* of a multivariate function (of several variables) is its derivative with respect to one of those variables.
- Their vector defines multivariate *function grad*.
- Total derivative of a multivariate function allows al variables to vary.

Partial Differentiation

For functions of two variables f(x, y):

- the partial derivatives are $\partial f/\partial x$, $\partial f/\partial y$.
- the **grad** of a function is defined by the vector: $\nabla f = [\partial f / \partial x, \partial f / \partial y]^T.$
- Grad direction shows the steepest local ascent direction.
- Grad magnitude shows the rate of the ascent.

Partial Differentiation

• At maxima/minima, saddle points: $\nabla f = 0$.

Saddle Point

Saddle point: • а point on the surface of a function where slopes the in orthogonal directions are all zero (critical point), but which is neither a minimum nor a Artificial Intelligence & Informental Axis and Informental Axis and Information Axis and Info

VML

 $f(x, y) = x^2 - y^2$

Weak Minimum

The function is almost flat along a certain direction.

 $f(x, y) = 0.5x^2 - xy + 0.5y^2$

Hessian matrix

• For functions of many variables $f(\mathbf{x})$, $\mathbf{x} = [x_1, x_2, ..., x_n]^T$ the Hessian matrix is given by:

Differentiation of linear functions

The differentiation of a linear function $\mathbf{y} \in \mathbb{R}^m$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{m \times n}$:

 $\mathbf{y} = \mathbf{A}\mathbf{x}$,

Is given by:

Vector and Matrix Derivatives

- $\nabla_{\mathbf{x}}(\mathbf{x}^{\mathrm{T}}\mathbf{a}) = \nabla_{\mathbf{x}}(\mathbf{a}^{\mathrm{T}}\mathbf{x}) = \mathbf{a}$
- $\nabla_{\mathbf{x}}(\mathbf{a}^{\mathrm{T}}\mathbf{X}\mathbf{b}) = \mathbf{a}\mathbf{b}^{\mathrm{T}}$
- $\nabla_{\mathbf{x}}(\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x}) = (\mathbf{A} + \mathbf{A}^{\mathrm{T}})\mathbf{x}$
- $\nabla_{\mathbf{x}}(\mathbf{b}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}\mathbf{A}\mathbf{X}\mathbf{c}) = \mathbf{A}^{\mathrm{T}}\mathbf{X}\mathbf{b}\mathbf{c}^{\mathrm{T}} + \mathbf{A}\mathbf{X}\mathbf{c}\mathbf{b}^{\mathrm{T}}$
- $\nabla_{\mathbf{X}} \left((\mathbf{X}\mathbf{b} + \mathbf{c})^{\mathrm{T}} \mathbf{A} (\mathbf{X}\mathbf{b} + \mathbf{c}) \right) = (\mathbf{A} + \mathbf{A}^{\mathrm{T}}) (\mathbf{X}\mathbf{b} + \mathbf{c}) \mathbf{b}^{\mathrm{T}}$

Overdetermined System of Linear Equations

Let an overdetermined system of linear equations be:

Mx=y.

- **M** is a $n \times m$ matrix,
- **y** is a known *n*-dimensional vector
- **x** is an unknown *m*-dimensional vector.
- If n > m, there are more constraints than unknowns.
- The system is overdetermined, with no solution (except for degenerate cases).

Numerical partial differentiation

• Let f be a function defined on a set $\mathcal{A} \subseteq \mathbb{R}^2$ and suppose that the points $(x, y), (x + r\Delta x, y), (x, r\Delta y + y)$ all lie in \mathcal{A} for any $r \in [0,1]$. Then the

two partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ can be approximated by:

$$\frac{\partial f}{\partial x}(x,y) \approx \frac{f(x+\Delta x,y)-f(x,y)}{\Delta x},$$
$$\frac{\partial f}{\partial y}(x,y) \approx \frac{f(x,y+\Delta y)-f(x,y)}{\Delta y}.$$

Image Edge Detection

Local image differentiation techniques can produce edge detector operators.

• Image luminance gradient:

$$\nabla f(x,y) = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix}^T \stackrel{\Delta}{=} \begin{bmatrix} f_x & f_y \end{bmatrix}^T.$$

• Edge magnitude:

$$e(x,y) = \sqrt{f_x^2(x,y) + f_y^2(x,y)}.$$

Edge direction angle:

$$\varphi(x, y) = \arctan(\frac{f_y}{f_x})$$

Image Edge detection

Gradient estimates can be obtained by using gradient operators of the form:

$$\widehat{f}_x = \mathbf{w}_1^T \mathbf{x},$$
$$\widehat{f}_y = \mathbf{w}_2^T \mathbf{x}.$$

- x: local image pixel vector,
- w₁, w₂: weight vectors (gradient masks).

Image Edge Detection

Gradient masks examples:

Prewitt edge detector masks

Sobel edge detector masks

Edge templates are masks that can be used to detect edges along different directions. Such masks of size 3X3 are:

0

-1

-1

24

0

-1

 -1
 0
 1

 -1
 0
 1

 -1
 0
 1

Kirsch edge detector masks

Image Edge detection

a) Lenna image; b) Sobel edge detector output ; c) horizontal edges; d) vertical edges.

Partial Differentiation in 3D imaging 3D image gradient:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right]^T.$$

• Numerical estimation of its components at position $[x, y, z]^T$ assuming $\Delta x = \Delta y = \Delta z = 1$: $\widehat{f} = f(x + 1, y, z) - f(x - 1, y, z)$

$$\widehat{f}_{x} = f(x + 1, y, z) - f(x - 1, y, z),$$

$$\widehat{f}_{y} = f(x, y + 1, z) - f(x, y - 1, z),$$

$$\widehat{f}_{z} = f(x, y, z + 1) - f(x, y, z - 1).$$

Partial Differentiation in 3D imaging

$$n_k = \frac{f_k}{\sqrt{f_x^2 + f_y^2 + f_z^2}}, \qquad k \in \{x, y, z\}.$$

• Laplacian operator:

$$\nabla^2 f(x, y, z) = \frac{\partial^2 f(x, y, z)}{\partial x^2} + \frac{\partial^2 f(x, y, z)}{\partial y^2} + \frac{\partial^2 f(x, y, z)}{\partial z^2}$$

VML

Partial Differentiation in 3D imaging

Numerical differentiation for:

- 3D volumetric images $f(n_1, n_2, n_3)$;
- Spatiotemporal signals (digital video) $f(n_1, n_2, n_t)$:

$$\widehat{f}_x = \frac{1}{4} \{ f(n_1 + 1, n_2, n_t) - f(n_1, n_2, n_t) + f(n_1 + 1, n_2 + 1, n_t) - f(n_1, n_2 + 1, n_t) + f(n_1 + 1, n_2, n_t + 1) - f(n_1, n_2, n_t + 1) + f(n_1 + 1, n_2 + 1, n_t + 1) - f(n_1, n_2 + 1, n_t + 1) \}$$

ML

Partial Differential Equations

• Laplacian equation:

 $\nabla^2 f(x, y, z) = 0 \, .$

• *Wave equation* describes electromagnetic fields:

$$\nabla^2 f(x, y, z) = \frac{\partial^2 f(x, y, z)}{\partial x^2} + \frac{\partial^2 f(x, y, z)}{\partial y^2} + \frac{\partial^2 f(x, y, z)}{\partial z^2} =$$

$$=\frac{1}{c^2}\frac{\partial^2}{\partial t^2}f(x,y,z,t),$$

11123

• c: speed of light.

VML

Partial Differential Equations

• *Diffusion equation* describes diffusion and transfer processes:

$$\nabla^2 f(x, y, z) = \frac{\partial^2 f(x, y, z)}{\partial x^2} + \frac{\partial^2 f(x, y, z)}{\partial y^2} + \frac{\partial^2 f(x, y, z)}{\partial z^2} = \frac{1}{c} \frac{\partial}{\partial t} f(x, y, z, t).$$

c: diffusion coefficient.

Partial Differential Equations

• Anisotropic diffusion within a 6-voxel neiborhood:

$$\begin{split} &\frac{\partial}{\partial t}f(\mathbf{x},t) \cong \\ &\cong \frac{1}{\Delta x^2} \bigg[c \left(x + \frac{\Delta x}{2}, y, z, t \right) \left(f(x + \Delta x, y, z, t) - f(x, y, z, t) \right) - c \left(x - \frac{\Delta x}{2}, y, z, t \right) \left(f(x, y, z, t) - f(x - \Delta x, y, z, t) \right) \bigg] + \\ &+ \frac{1}{\Delta y^2} \bigg[c \left(x, y + \frac{\Delta y}{2}, z, t \right) \left(f(x, y + \Delta z, z, t) - f(x, y, z, t) \right) - c \left(x, y - \frac{\Delta y}{2}, z, t \right) \left(f(x, y, z, t) - f(x, y - \Delta y, z, t) \right) \bigg] + \\ &+ \frac{1}{\Delta z^2} \bigg[c \left(x, y, z + \frac{\Delta z}{2}, t \right) \left(f(x, y, z + \Delta z, t) - f(x, y, z, t) \right) - c \left(x, y, z - \frac{\Delta z}{2}, t \right) \left(f(x, y, z, t) - f(x, y, z - \Delta z, t) \right) \bigg] . \end{split}$$

Mathematical Analysis

- 1D/2D/3D Functions
- Differentiation
- Integration
- Partial differentiation
- Double integrals
- Optimization
- Fourier transforms

Double Integrals

- Double integrals integrate a function of two variables over a region $\mathcal{A} \subseteq \mathbb{R}^2$.
- It represents the volume of the region between the surface defined by the function z = f(x, y) and the plane (x, y).

Artificial Intelligence & Information Analysis Lab

Splitting the integration area into elementary rectangles.

Double Integrals

• The volume V of the function under a surface is approximately given by:

$$V \approx \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_i^*, y_j^*).$$

• At the limit $n, m \to \infty$:

$$V = \iint_R f(x, y) = \lim_{n, m \to \infty} \sum_{i=1}^n \sum_{j=1}^m f(x_i^*, y_j^*) \Delta A$$

Contour Integration

- A *curve* is a continuous function from closed interval of the real line to the complex plane $f(z): [a, b] \rightarrow \mathbb{C}$.
- A *smooth curve* is a curve with non-vanishing, continuous derivative, such that each point is traversed only once with the exception of curve endpoints.
- A contour is a directed curve, which is made up of a finite sequence of directed smooth curves, whose start/endpoints match.

Contour Integration

У,

Contour integral over a real valued parameter.

X

С

Contour Integration

Unit circle in the complex plane \mathbb{C} :

|z| = 1.

• Parameterized unit circle equation:

$$z(\omega) = e^{i\omega}, \quad \omega \in [0, 2\pi].$$

ieiw

Since:

contour integration becomes:

$$\oint_C \frac{1}{z} dz = \int_0^{2\pi} \frac{1}{e^{i\omega}} i e^{i\omega} d\omega = i \int_0^{2\pi} 1 d\omega = [t]_0^{2\pi} = 2\pi i.$$

 $d\omega$

Mathematical Analysis

- 1D/2D/3D Functions
- Differentiation
- Integration
- Partial differentiation
- Double integrals
- Optimization
- Fourier transforms

Steepest Gradient Descent

- a: step used to update the vector \mathbf{x}_{t+1} at each iteration t.
- f(x_{t+1}) ≤ f(x_t) and sequence x_t converges to a local minimum of f(x_t).

Steepest Gradient Descent

Mathematical Analysis

- 1D/2D/3D Functions
- Differentiation
- Integration
- Partial differentiation
- Double integrals
- Optimization
- Fourier transforms

• 1D Fourier transform:

$$F(\Omega) = \int_{-\infty}^{\infty} f(t) e^{-i\Omega t} dx.$$

• 1D inverse Fourier transform:

$$f(t) = \int_{-\infty}^{\infty} F(\Omega) e^{i\Omega t} d\Omega.$$

1D convolution:

g(t) = f(t) * h(t)

1D convolution support in the Fourier domain:

 $G(\Omega) = F(\Omega)H(\Omega).$

• 2D Fourier transform:

$$F(\Omega_x, \Omega_y) \triangleq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \exp(-i\Omega_x x - i\Omega_y y) dx dy.$$

• 2D inverse Fourier transform:

$$f(x,y) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\Omega_x, \Omega_y) \exp(i\Omega_x x + i\Omega_y y) d\Omega_x d\Omega_y.$$

Spatial image content

 $f(x, y) = \sin(20\pi x + 8\pi y)$ $(\Omega_x = 20\pi, \Omega_x = 8\pi)$

• 3D Fourier transform:

$$F(\Omega_x, \Omega_y, \Omega_z) \triangleq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, z) exp(-i\Omega_x x - i\Omega_y y - i\Omega_z z) dx dy dz$$

• 3D inverse Fourier transform:

$$f(x,y,z) = \frac{1}{(2\pi)^3} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(\Omega_x, \Omega_y, \Omega_z) exp(i\Omega_x x + i\Omega_y y + i\Omega_z z) d\Omega_x d\Omega_y d\Omega_z$$

3D convolution:

$$g(x, y, z) = f(x, y, z) *** h(x, y, z).$$

2D convolution support in the Fourier domain:

$$G(\Omega_x, \Omega_y, \Omega_z) = F(\Omega_x, \Omega_y, \Omega_z)H(\Omega_x, \Omega_y, \Omega_z)$$

3D Discrete Fourier Transform:

$$F(k_1, k_2, k_3) = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} \sum_{n_3=0}^{N_3-1} f(n_1, n_2, n_3) \exp(-j \frac{2\pi n_1 k_1}{N_1}, -j \frac{2\pi n_2 k_2}{N_2}, -j \frac{2\pi n_3 k_3}{N_3}),$$

$$f(n_1, n_2, n_3) = \frac{1}{N_1 N_2 N_3} \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} \sum_{k_2=0}^{N_2-1} F(k_1, k_2, k_3) \exp(j\frac{2\pi n_1 k_1}{N_1}, j\frac{2\pi n_2 k_2}{N_2}, j\frac{2\pi n_3 k_3}{N_3})$$

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

