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Mathematical Analysis

• 1D/2D/3D Functions

• Differentiation

• Integration

• Partial differentiation

• Double integrals

• Optimization

• Fourier transforms
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1D, 2D, 3D analog signals / 
functions
• 1D signals of the form 𝑓 𝑡 :ℝ → ℝ

• Speech, music.

• 2D signals of the form 𝑓 𝑥, 𝑦 :ℝ2 → ℝ

• Greyscale images.

• 3D signals of the form 𝑓 𝑥, 𝑦, 𝑧 :ℝ3 → ℝ

• Video signals 𝑓 𝑥, 𝑦, 𝑡 : ℝ3 → ℝ
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3D data types: video signal 
𝒇(𝒙, 𝒚, 𝒕)

4



1D, 2D, 3D discrete signals

• 1D signals of the form 𝑓 𝑛 : ℤ → ℝ

• Digital speech, music

• 2D signals of the form 𝑓 𝑖, 𝑗 : ℤ2 → ℝ

• Digital greyscale images

• 3D signals of the

• Volumetric images 𝑓 𝑖, 𝑗, 𝑘 : ℤ3 → ℝ

• Digital video signals 𝑓 𝑖, 𝑗, 𝑘 : ℤ3 → ℝ
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1D Differentiation
• The derivative of a function at a specific

point is the rate of change of function

output with respect to its input.

• For 1D continuous functions, it is the

slope of the tangent line to the function

graph at that point:

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ
.
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Numerical Differentiation

• Numerical Differentiation performs approximate

differentiation, on discrete function values:

𝑓′ 𝑥 =
𝑓 𝑥 + Δ𝑥 − 𝑓(𝑥 − Δ𝑥)

2Δ𝑥
.

• For small sampling step Δ𝑥, it is equal to the slope of a nearby

secant line through the points (𝑥 − Δ𝑥, 𝑓(𝑥 − Δ𝑥)) and (𝑥 +

Δ𝑥, 𝑓(𝑥 + Δ𝑥)) .
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Numerical Differentiation

• Numerical Differentiation is a high pass linear

system:

• It amplifies high frequencies.

• It is sensitive to noise.
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Function Minima

10

• Local and global minima.

• Derivate is zero at function minima and maxima.

𝑥4 − 10𝑥2 − 𝑥 + 5

Local minimum

Global minimum

Local maximum
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Integration
• Integration is the reverse of differentiation.

• Indefinite integral for a function f(x):

න𝑓 𝑥 𝑑𝑥 = 𝐹 𝑥 + c.

• Fundamental theorem of calculus.

• Definite integral in the interval [𝑎, 𝑏]:

න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = 𝐹 𝑏 − 𝐹(𝑎) .
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Integration

• Definite integrals is the area under a function curve for the

interval [𝑎, 𝑏].
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Partial Differentiation

• A partial derivative of a multivariate function (of several

variables) is its derivative with respect to one of those variables.

• Their vector defines multivariate function grad.

• Total derivative of a multivariate function allows al variables to

vary.
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Partial Differentiation

For functions of two variables 𝑓 𝑥, 𝑦 :

• the partial derivatives are 𝜕𝑓/𝜕𝑥, 𝜕𝑓/𝜕𝑦 .

• the grad of a function is defined by the vector:

∇𝑓 = Τ𝜕𝑓 𝜕𝑥, Τ𝜕𝑓 𝜕𝑦 𝑇 .

• Grad direction shows the steepest local ascent direction.

• Grad magnitude shows the rate of the ascent.
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Partial Differentiation

• At maxima/minima, saddle points: ∇𝑓 = 0.
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Saddle Point

• Saddle point: a

point on the surface

of a function where

the slopes in

orthogonal

directions are all

zero (critical point),

but which is neither

a minimum nor a

maximum. 20

𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2



Weak Minimum

The function is almost

flat along a certain

direction.
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𝑓 𝑥, 𝑦 = 0.5𝑥2 − 𝑥𝑦 + 0.5𝑦2



Hessian matrix

• For functions of many variables 𝑓(𝐱), 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝑛
T the

Hessian matrix is given by:

𝐇 =

𝜕2𝑓

𝜕𝑥1
2

𝜕2𝑓

𝜕𝑥1𝜕𝑥2
⋯

𝜕2𝑓

𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2 ⋯

𝜕2𝑓

𝜕𝑥2𝜕𝑥𝑛

⋮ ⋮ ⋱ ⋮
𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥2
⋯

𝜕2𝑓

𝜕𝑥𝑛
2

.
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Differentiation of linear 
functions
The differentiation of a linear function 𝐲 ∈ ℝ𝑚 , 𝐱 ∈ ℝ𝑛, 𝐀 ∈ ℝ𝑚×𝑛:

𝐲 = 𝐀𝐱,

𝑦1
.
.
.
𝑦𝑚

=

𝑎11 𝑎12 … 𝑎1𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

𝑥1
.
.
.
𝑥𝑛

Is given by:

∇𝐱𝐲 = 𝐀.
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Vector and Matrix 
Derivatives

• ∇𝐱 𝐱T𝐚 = ∇𝐱 𝐚T𝐱 = 𝐚

• ∇𝐱 𝐚T𝐗𝐛 = 𝐚𝐛T

• ∇𝐱 𝐱T𝐀𝐱 = (𝐀 + 𝐀T)𝐱

• ∇𝐱 𝐛T𝐗T𝐀𝐗𝐜 = 𝐀T𝐗𝐛𝐜T + 𝚨𝐗𝐜𝐛T

• ∇𝐱 𝐗𝐛 + 𝐜 T𝐀(𝐗𝐛 + 𝐜) = (𝐀 + 𝐀T) 𝐗𝐛 + 𝐜 𝐛T
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Overdetermined System of 
Linear Equations
Let an overdetermined system of linear equations be:

Mx=𝐲.

• 𝐌 is a 𝑛 × 𝑚 matrix,

• 𝐲 is a known 𝑛-dimensional vector

• 𝐱 is an unknown 𝑚-dimensional vector.

• If 𝑛 > 𝑚, there are more constraints than unknowns.

• The system is overdetermined, with no solution (except for

degenerate cases).
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Numerical partial 
differentiation
• Let 𝑓 be a function defined on a set 𝒜 ⊆ ℝ2 and suppose that the points

𝑥, 𝑦 , 𝑥 + 𝑟𝛥𝑥, 𝑦 , (𝑥, 𝑟𝛥𝑦 + 𝑦) all lie in 𝒜 for any 𝑟 ∈ [0,1]. Then the

two partial derivatives
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
can be approximated by:

𝜕𝑓

𝜕𝑥
𝑥, 𝑦 ≈

𝑓 𝑥+𝛥𝑥,𝑦 −𝑓(𝑥,𝑦)

𝛥𝑥
,

𝜕𝑓

𝜕𝑦
𝑥, 𝑦 ≈

𝑓 𝑥,𝑦+𝛥𝑦 −𝑓(𝑥,𝑦)

𝛥𝑦
.
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Local image differentiation techniques can produce edge

detector operators.

• Image luminance  gradient:

∇𝑓(𝑥, 𝑦) = [
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦
]𝑇 =

Δ
[𝑓𝑥 𝑓𝑦]

𝑇.

• Edge magnitude:

𝑒(𝑥, 𝑦) = 𝑓𝑥
2(𝑥, 𝑦) + 𝑓𝑦

2(𝑥, 𝑦).

• Edge direction angle:

𝜑(𝑥, 𝑦) = arctan(
𝑓𝑦

𝑓𝑥
).

Image Edge Detection
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Gradient estimates can be obtained by using gradient

operators of the form:

𝑓𝑥 = 𝐰1
𝑇𝐱,

𝑓𝑦 = 𝐰2
𝑇𝐱.

• 𝐱: local image pixel vector,

• 𝐰1 , 𝐰2: weight vectors (gradient masks).

Image Edge detection
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Gradient masks examples:

Edge templates are masks that can be used to detect edges 

along different directions. Such masks of size 3X3 are:

Image Edge Detection

33
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0 1 1 
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0 -1 -1 
 

Kirsch edge 

detector masks 



Image Edge detection

a) Lenna image; b) Sobel edge detector output ; c) horizontal edges; d) vertical edges.
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Partial Differentiation in 
3D imaging
3D image gradient:

∇𝑓 =
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧

𝑇
. 

• Numerical estimation of its components at position 𝑥, 𝑦, 𝑧 𝑇

assuming Δ𝑥 = Δ𝑦 = Δ𝑧 = 1:

𝑓𝑥 = 𝑓 𝑥 + 1, 𝑦, 𝑧 − 𝑓 𝑥 − 1, 𝑦, 𝑧 ,

𝑓𝑦 = 𝑓 𝑥, 𝑦 + 1, 𝑧 − 𝑓 𝑥, 𝑦 − 1, 𝑧 ,

𝑓𝑧 = 𝑓 𝑥, 𝑦, 𝑧 + 1 − 𝑓 𝑥, 𝑦, 𝑧 − 1 .
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Partial Differentiation in 
3D imaging
• Normalized gradient components:

𝑛𝑘 =
𝑓𝑘

𝑓𝑥
2 + 𝑓𝑦

2 + 𝑓𝑧
2

, 𝑘 ∈ 𝑥, 𝑦, 𝑧 .

• Laplacian operator:

∇2𝑓 𝑥, 𝑦, 𝑧 =
𝜕2𝑓(𝑥, 𝑦, 𝑧)

𝜕𝑥2
+
𝜕2𝑓(𝑥, 𝑦, 𝑧)

𝜕𝑦2
+
𝜕2𝑓(𝑥, 𝑦, 𝑧)

𝜕𝑧2
.
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Partial Differentiation in 
3D imaging
Numerical differentiation for:

• 3D volumetric images 𝑓 𝑛1, 𝑛2. 𝑛3 ;

• Spatiotemporal signals (digital video) 𝑓 𝑛1, 𝑛2. 𝑛𝑡 :

𝑓𝑥 =
1

4
ሼ

ሽ

𝑓 𝑛1 + 1, 𝑛2, 𝑛𝑡 − 𝑓 𝑛1, 𝑛2, 𝑛𝑡 + 𝑓 𝑛1 + 1, 𝑛2 + 1, 𝑛𝑡 −

𝑓 𝑛1, 𝑛2 + 1, 𝑛𝑡 + 𝑓 𝑛1 + 1, 𝑛2, 𝑛𝑡 + 1 − 𝑓 𝑛1, 𝑛2, 𝑛𝑡 + 1 +

𝑓 𝑛1 + 1, 𝑛2 + 1, 𝑛𝑡 + 1 − 𝑓 𝑛1, 𝑛2 + 1, 𝑛𝑡 + 1 .
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Partial Differential 
Equations
• Laplacian equation:

∇2𝑓 𝑥, 𝑦, 𝑧 = 0 .

• Wave equation describes electromagnetic fields:

∇2𝑓 𝑥, 𝑦, 𝑧 =
𝜕2𝑓(𝑥, 𝑦, 𝑧)

𝜕𝑥2
+
𝜕2𝑓(𝑥, 𝑦, 𝑧)

𝜕𝑦2
+
𝜕2𝑓(𝑥, 𝑦, 𝑧)

𝜕𝑧2
=

=
1

𝑐2
𝜕2

𝜕𝑡2
𝑓 𝑥, 𝑦, 𝑧, 𝑡 ,

• 𝑐: speed of light.
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Partial Differential 
Equations
• Diffusion equation describes diffusion and transfer processes:

∇2𝑓 𝑥, 𝑦, 𝑧 =
𝜕2𝑓(𝑥, 𝑦, 𝑧)

𝜕𝑥2
+
𝜕2𝑓(𝑥, 𝑦, 𝑧)

𝜕𝑦2
+
𝜕2𝑓(𝑥, 𝑦, 𝑧)

𝜕𝑧2
=

=
1

𝑐

𝜕

𝜕𝑡
𝑓 𝑥, 𝑦, 𝑧, 𝑡 .

• 𝑐: diffusion coefficient.
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Partial Differential 
Equations

• Anisotropic diffusion within a 6-voxel neiborhood:
𝜕

𝜕𝑡
𝑓 𝐱, 𝑡 ≅

≅
1

Δ𝑥2
𝑐 𝑥 +

Δ𝑥

2
, 𝑦, 𝑧, 𝑡 𝑓 𝑥 + Δ𝑥, 𝑦, 𝑧, 𝑡 − 𝑓 𝑥, 𝑦, 𝑧, 𝑡 − 𝑐 𝑥 −

Δ𝑥

2
, 𝑦, 𝑧, 𝑡 𝑓 𝑥, 𝑦, 𝑧, 𝑡 − 𝑓 𝑥 − Δ𝑥, 𝑦, 𝑧, 𝑡 +

+
1

Δy2
𝑐 𝑥, 𝑦 +

Δy

2
, 𝑧, 𝑡 𝑓 𝑥, 𝑦 + Δ𝑧, 𝑧, 𝑡 − 𝑓 𝑥, 𝑦, 𝑧, 𝑡 − 𝑐 𝑥, 𝑦 −

Δ𝑦

2
, 𝑧, 𝑡 𝑓 𝑥, 𝑦, 𝑧, 𝑡 − 𝑓 𝑥, 𝑦 − Δ𝑦, 𝑧, 𝑡 +

+
1

Δz2
𝑐 𝑥, 𝑦, 𝑧 +

Δ𝑧

2
, 𝑡 𝑓 𝑥, 𝑦, 𝑧 + Δ𝑧, 𝑡 − 𝑓 𝑥, 𝑦, 𝑧, 𝑡 − 𝑐 𝑥, 𝑦, 𝑧 −

Δ𝑧

2
, 𝑡 𝑓 𝑥, 𝑦, 𝑧, 𝑡 − 𝑓 𝑥, 𝑦, 𝑧 − Δ𝑧, 𝑡 .
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Double Integrals 

• Double integrals integrate a function of two variables over a

region 𝒜 ⊆ ℝ2.

• It represents the volume of the region between the surface

defined by the function 𝑧 = 𝑓(𝑥, 𝑦) and the plane (𝑥, 𝑦).
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Double Integrals 

46

𝑓 𝑥, 𝑦 = 1 −
𝑥2 + 𝑦2

8



Double Integrals 

48

Splitting the integration area into elementary rectangles.



Double Integrals 

• The volume 𝑉 of the function under a surface is approximately

given by:

𝑉 ≈ σ𝑖=1
𝑛 σ𝑗=1

𝑚 𝑓 𝑥𝑖
∗, 𝑦𝑗

∗ .

• At the limit 𝑛,𝑚 → ∞ :

𝑉 = ඵ
𝑅

𝑓(𝑥, 𝑦) = lim
𝑛,𝑚→∞



𝑖=1

𝑛



𝑗=1

𝑚

𝑓 𝑥𝑖
∗, 𝑦𝑗

∗ ΔΑ .
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Contour Integration 

• A curve is a continuous function from closed interval of the real

line to the complex plane 𝑓(𝑧): 𝑎, 𝑏 → ℂ.

• A smooth curve is a curve with non-vanishing, continuous

derivative, such that each point is traversed only once with the

exception of curve endpoints.

• A contour is a directed curve, which is made up of a finite

sequence of directed smooth curves, whose start/endpoints

match.
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Contour Integration 

52

Contour integral over a real valued parameter.



Contour Integration 

Unit circle in the complex plane ℂ:

𝑧 = 1. 

• Parameterized unit circle equation:

𝑧 𝜔 = 𝑒𝑖𝜔, 𝜔 ∈ 0,2𝜋 .

Since:

𝑑𝑧

𝑑𝜔
= 𝑖𝑒𝑖𝜔,

contour integration becomes:

𝐶ׯ
1

𝑧
𝑑𝑧 = 0

2π 1

𝑒𝑖𝜔
𝑖𝑒𝑖𝜔𝑑𝜔 = 𝑖 0

2𝜋
1𝑑𝜔 = 𝑡 0

2𝜋 = 2𝜋𝑖.
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Steepest Gradient Descent

• If function 𝑓 𝐱 is defined and differentiable in a neigh-borhood

of a point 𝐱𝑡, then 𝑓(𝐱) decreases fastest, going from 𝐱𝑡 to 𝐱𝑡+1
following the direction of the negative gradient of 𝑓(𝐱) at 𝐱𝑡:

𝐱𝑡+1 = 𝐱𝑡 − 𝑎∇𝑓 𝐱𝑡 .

• 𝑎: step used to update the vector 𝐱𝑡+1 at each iteration 𝑡.

• 𝑓(𝐱𝑡+1) ≤ 𝑓(𝐱𝑡) and sequence 𝐱𝑡 converges to a local minimum

of 𝑓(𝐱𝑡).
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Steepest Gradient Descent
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1D Fourier transform

• 1D Fourier transform:

𝐹 Ω = න

−∞

∞

𝑓 𝑡 𝑒−𝑖Ωt𝑑𝑥.

• 1D inverse Fourier transform:

𝑓 𝑡 = න

−∞

∞

𝐹 Ω 𝑒𝑖Ω𝑡𝑑Ω.
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1D Fourier transform

1D convolution:

𝑔 𝑡 = 𝑓 𝑡 ∗ ℎ 𝑡

1D convolution support in the Fourier domain:

𝐺 Ω = 𝐹 Ω 𝐻 Ω .
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2D Fourier transform

• 2D Fourier transform:

𝐹 Ω𝑥 , Ω𝑦 ≜ න

−∞

∞

න

−∞

∞

𝑓 𝑥, 𝑦 exp −𝑖Ω𝑥𝑥 − 𝑖Ω𝑦𝑦 𝑑𝑥𝑑𝑦 .

• 2D inverse Fourier transform:

𝑓 𝑥, 𝑦 =
1

4𝜋2
න

−∞

∞

න

−∞

∞

𝐹 Ω𝑥 , Ω𝑦 exp 𝑖Ω𝑥𝑥 + 𝑖Ω𝑦𝑦 𝑑Ω𝑥𝑑Ω𝑦 .
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Spatial image content

𝑓 𝑥, 𝑦 = sin 20𝜋𝑥 + 8𝜋𝑦

(Ω𝑥= 20𝜋, Ω𝑥 = 8𝜋)
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3D Fourier transform

• 3D Fourier transform:

𝐹 Ω𝑥, Ω𝑦, Ω𝑧 ≜ න

−∞

∞

න

−∞

∞

න

−∞

∞

𝑓 𝑥, 𝑦, 𝑧 𝑒𝑥𝑝 −𝑖Ω𝑥𝑥 − 𝑖Ω𝑦𝑦 − 𝑖Ω𝑧𝑧 𝑑𝑥𝑑𝑦 𝑑𝑧 .

• 3D inverse Fourier transform:

𝑓 𝑥, 𝑦, 𝑧 =
1

(2𝜋)3
න

−∞

∞

න

−∞

∞

න

−∞

∞

𝐹 Ω𝑥 , Ω𝑦, Ω𝑧 𝑒𝑥𝑝 𝑖Ω𝑥𝑥 + 𝑖Ω𝑦𝑦 + 𝑖Ω𝑧𝑧 𝑑Ω𝑥𝑑Ω𝑦𝑑Ω𝑧 .
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3D Fourier transform

3D convolution:

𝑔 𝑥, 𝑦, 𝑧 = 𝑓 𝑥, 𝑦, 𝑧 ∗∗∗ ℎ 𝑥, 𝑦, 𝑧 .

2D convolution support in the Fourier domain:

𝐺 Ω𝑥 , Ω𝑦 , Ω𝑧 = 𝐹 Ω𝑥 , Ω𝑦 , Ω𝑧 𝐻 Ω𝑥 , Ω𝑦, Ω𝑧 .
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3D Fourier transform

3D Discrete Fourier Transform:

𝐹 𝑘1, 𝑘2, 𝑘3 = σ𝑛1=0
𝑁1−1σ𝑛2=0

𝑁2−1σ𝑛3=0
𝑁3−1 𝑓 𝑛1, 𝑛2, 𝑛3 exp(−𝑗

2𝜋𝑛1𝑘1

𝑁1
, −𝑗

2𝜋𝑛2𝑘2

𝑁2
, −𝑗

2𝜋𝑛3𝑘3

𝑁3
) ,

𝑓 𝑛1, 𝑛2, 𝑛3 =
1

𝑁1𝑁2𝑁3
σ𝑘1=0
𝑁1−1σ𝑘2=0

𝑁2−1σ𝑘2=0
𝑁2−1𝐹 𝑘1, 𝑘2, 𝑘3 exp(𝑗

2𝜋𝑛1𝑘1

𝑁1
, 𝑗

2𝜋𝑛2𝑘2

𝑁2
, 𝑗

2𝜋𝑛3𝑘3

𝑁3
) .
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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