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Linear Algebra

• Vectors, matrices

• System of linear equations

• Eigenanalysis

• Singular value Decomposition

• Other matrix decompositions

• Tensors Fundamentals

• BLAS.
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Vectors

A vector of dimension 𝑛 is an 1D array of numbers: 

𝐱 = 𝑥1, … , 𝑥𝑛
𝑇 ∈ ℝ𝑛.

• 𝑥1, … , 𝑥𝑛: 𝑛 vector coordinates.

• Vector inner product:

𝐱𝑇𝐲 = σ𝑘=1
𝑛 𝑥𝑘𝑦𝑘.
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Vectors

Cartecian vector 𝒙 = 4,2 𝑇 representation.
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Geometrical vector interpretation:

• a point in a Euclidean space 

ℝ𝑛. 

• Polar, spherical vector 

representation in ℝ2 , ℝ3: 

magnitude |𝐱| and direction 

angle(s).



Matrices and tensors

A matrix 𝐀 is a 𝑛 ×𝑚 table (2D array) of numbers:

𝐀 = 𝑎𝑖𝑗 = 𝐚1…𝐚𝑚 =

𝛼11
𝛼21

𝛼12
𝛼22

⋯
⋯

𝛼1𝑚
𝛼2𝑚

⋮ ⋮ ⋱ ⋮
𝛼𝑛1 𝛼𝑛2 ⋯ 𝛼𝑛𝑚

.

• 𝐚𝑗 , 𝑗 = 1,… ,𝑚: matrix columns.

• 𝑘–th order tensor: A k-D array of numbers 𝐀 ∈ ℝ𝑛1×⋯×𝑛𝑘.
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Matrix Properties

• The multiplication of inverse matrix 𝐀−1 of a square matrix 

𝐀 ∈ ℝ𝑛×𝑛 with matrix 𝐀 is the identity 𝑛 × 𝑛 matrix 𝐈:

𝐀𝐀−1 = 𝐀−1 𝐀 = 𝐈.

• It exists, if matrix determinant det 𝐀 ≠ 0.

• Inverse matrix properties:

(𝐀𝐁)−1= 𝐁−1𝐀−1.

• A square matrix that is not invertible is called singular.

• 𝐀 is singular, if its rank is less than 𝑛. 
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System of linear equations
System of linear equations

𝐀𝐱 = 𝐲.

• Unknown vector: 𝐱 ∈ ℝ𝑚.

• 𝑚 equations:

𝑦1
.
.
.
𝑦𝑛

=

𝑎11 𝑎12 … 𝑎1𝑚
⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑚

𝑥1
.
.
.
𝑥𝑚

.
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System of linear equations
System of linear equations

𝐀𝐱 = 𝐲.

• If 𝑚 = 𝑛 and 𝐀−1 exists, the solution is:

𝐱 = 𝐀−1𝐲.

• If 𝑚 > 𝑛, the system is over-determined.

• Possibly no solution.

• If 𝑚 < 𝑛, the system is under-determined.

• Possibly multiple solutions.
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System of linear equations

Linear system of three variables:

• Each equation determines a plane in 

space ℝ3.

• Their intersection point is the solution

of the system. 
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Eigenanalysis

• Eigenvectors and eigenvalues of a matrix are important as

they provide fundamental information about a matrix.

• They allow easy determination as to whether a matrix is

positive definite or not.

• Also allow determination as to whether a matrix is invertible

and how sensitive to numerical errors the inverse will be.
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Eigenanalysis

If 𝐀 is an 𝑛 × 𝑛 matrix, its eigenvalue 𝜆 and eigenvector 𝐯
satisfy:

𝐀𝐯 = 𝜆𝐯.

Equivalently, they form a solution of the homogeneous linear

equation system:

𝐀 − 𝜆𝐈𝑛 𝐯 = 0,

where 𝐈𝑛 is a unitary 𝑛 × 𝑛 matrix.
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Spectral Theorem

Matrix 𝐀 is guaranteed to be invertible, if 𝜆𝑖 ≠ 0 for all 𝑖 =
1,… , 𝑛.

This is equivalent to matrix determinant being not equal to 0:

det 𝐀 = Π𝑖=1
𝑛 𝜆𝑖 ≠ 0.

• In practical Machine Learning and Computer Vision

applications, matrices are estimated from sample data.

• Therefore may be ill-conditioned, if one or more of the

eigenvalues are close to zero.
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Positive definite matrices

Positive definite matrix definition:

𝐱𝑇𝐂𝐱 > 0, ∀𝐱 ∈ ℝ𝑛.

for symmetric matrices 𝐂.

• Eigenvalues of a positive definite matrix are positive: 

𝜆𝑖 > 0, 𝑖 = 1,… , 𝑛.

• Determinant of a positive definite matrix:

det 𝐂 = Π𝑖=1
𝑛 𝜆𝑖 > 0.
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Singular Value Decomposition

Singular Value Decomposition

(SVD) deals with:

• Systems of equations whose

matrices are singular or numerically

very close to singular.

• Solving most Linear Least-

Squares (LLS) problems.

• Providing low rank matrix

approximations.
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Singular Value Decomposition

Any 𝑛 ×𝑚 matrix 𝚨 can be decomposed into:

𝚨 = 𝐔𝚺𝐕𝑇 ,

• 𝐔 (𝑛 × 𝑛 orthogonal) unitary matrix,

• 𝚺 (𝑛 ×𝑚 diagonal) matrix and

• 𝐕𝑇 (𝑚 ×𝑚 orthogonal) unitary matrix.

• Singular values of 𝚨 are the 𝑟 = min(𝑛,𝑚)
𝜎1, 𝜎2, … , 𝜎𝑟 diagonal elements of 𝚺.
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Singular Value Decomposition

Singular Value Matrix Decomposition.
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Cholesky decomposition

Cholesky matrix decomposition.
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Cholesky decomposition

Cholesky matrix decomposition is mainly used for the

numerical solution of linear equations 𝐀𝐱 = 𝐛 , when 𝐀 is

Symmetric Positive Definite (SPD) matrix.

• We first compute the matrix 𝐋 as described above. Then, we 

solve the equation:

𝐋𝐲 = 𝐛, 

where 𝐲 = 𝐋𝑇𝐱, using forward substitution and, finally, we solve:

𝐋𝑇𝐱 = 𝐛,

using back substitution.
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CUR Matrix Decomposition

• In CUR matrix approximation, the multiplication of

three matrices 𝐂 ∈ ℝ𝑚×𝑐 , 𝐔 ∈ ℝ𝑐×𝑟 , 𝐑 ∈ ℝ𝑟×𝑛 closely approximate

a given matrix 𝐀, by minimizing the approximation error

𝐀 − 𝐂𝐔𝐑 𝐹 .

• A CUR approximation can be used as low-rank approximation.
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CUR Matrix Decomposition

CUR matrix approximation.
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• Data matrix 𝐗 is an 𝑛 × 𝑁 matrix containing 𝑁 data vectors

𝐗 = [𝐱1, 𝐱2, … , 𝐱𝑁].

• It can be decomposed in a product of 𝑛 × 𝑝 and 𝑝 × 𝑁
matrices 𝐅 and 𝐇, respectively:

𝐗 = 𝐅𝐇.

• 𝑝 is smaller than 𝑁 and 𝑛.

• All elements of matrices 𝐅, 𝐇 should be positive: 𝑓𝑖𝑗 ≥ 0,

ℎ𝑘𝑙 ≥ 0.

53

Non-negative matrix 

factorization



Non-negative matrix factorization

𝐱𝑖 =                    ≈ ℎ1𝑖 +ℎ2𝑖 +⋯ℎ𝑙𝑖 + +ℎ𝑝𝑖

NMF image decomposition.



Other matrix decompositions

Some other matrix decompositions are:

• Polar decomposition, applicable to a square, complex

matrix 𝐀: 𝐀 = 𝐔𝐏 or 𝐀 = 𝐏′𝐔.

• Mostow decomposition, applicable to a square, complex,

non-singular matrix 𝐀: 𝐀 = 𝐔𝑒𝑖𝐌𝑒𝐒.

• Sinkhorn normal form, applicable to a square, real matrix

𝐀 with strictly positive elements 𝐀 = 𝐃1𝐒𝐃2.

There are many more matrix decompositions.
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Tensor Fundamentals

• A tensor is a multidimensional array of numerical values,

whose elements are identified using multiple indices.

• The order (degree) of a tensor is equal to the dimensionality

of its array.

• Tensors can be considered to be a generalization of

scalars, vectors and matrices.

• A scalar 𝑥 ∈ ℝis a 0th order tensor, a vector 𝐱 ∈ ℝ𝑛1 is a

1st order tensor and a matrix 𝐀 ∈ ℝ𝑛1×𝑛2 is a 2nd order

tensor.
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Tensor Fundamentals

• Color images and grayscale videos can be represented as

3D matrices (3rd order tensors), while color videos can be

represented as 4D matrices (4th order tensors).

• In social media, tensors can be used to represent

hypergraphs and multigraphs.

633rd order tensor.



Tensor Fundamentals
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Tube fibers 𝑋(:𝑗𝑘) of 

3rd order tensor.

Horizontal slices 𝑋(𝑖∷) of 

a 3rd order tensor.



Tensor Fundamentals

• The Frobenius norm of a 𝑘 -th order 𝑛1 × 𝑛2 ×⋯× 𝑛𝑘 tensor 𝐗 ∈
ℝ𝑛1×𝑛2×⋯×𝑛𝑘 is defined as:

𝐗 𝐹 ≜ σ
𝑖1=1
𝑛1 σ

𝑖2=1
𝑛2 …σ

𝑖𝑘=1
𝑛𝑘 𝑋𝑖1𝑖2…𝑖𝑘

2 .

It can be used to measure the distance between tensors 𝐗 and 𝐘:

𝑑 𝑋 − 𝑌 = 𝐗 − 𝐘 𝐹 = σ
𝑖1=1
𝑛1 σ

𝑖2=1
𝑛2 …σ

𝑖𝑘=1
𝑛𝑘 (𝑋𝑖1𝑖2…𝑖𝑘 − 𝑌𝑖1𝑖2…𝑖𝑘)

2.
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Tensor Fundamentals
• The inner product 𝑧 ≜ ۦ ۧ𝐗, 𝐘 of the 𝑘 −th order 𝑛1 × 𝑛2 ×
⋯× 𝑛𝑘 tensors 𝐗, 𝐘 is a scalar value define as:

𝑧 ≜ σ𝑖1=1
𝑛1 σ𝑖2=1

𝑛2 …σ
𝑖𝑘=1
𝑛𝑘 𝑋𝑖1𝑖2…𝑖𝑘𝑌𝑖1𝑖2…𝑖𝑘.

• The inner product 𝐙 ≜ ۦ ۧ𝐗, 𝐘 𝑝,𝑞 of a k-th order tensor 𝐗 and

a 𝑙-th order tensor 𝐘 (𝑛𝑝 = 𝑚𝑞 = 𝑈) is a 𝑘 + 𝑙 − 1 -th order

𝑛1 × 𝑛2 ×⋯× 𝑛𝑝−1 × 𝑛𝑝+1 ×⋯× 𝑛𝐾 ×𝑚1×𝑚2 ×⋯×

𝑚𝑞−1 ×𝑚𝑞+1 ×⋯×𝑚𝑙 tensor:

𝑧𝑖1𝑖2…𝑖𝑝−1𝑖𝑝+1…𝑖𝑘𝑗1𝑗2…𝑗𝑞−1𝑗𝑞+1…𝑗𝑙 ≜ 

𝑢=1

𝑈

𝑥𝑖1𝑖2…𝑖𝑝−1𝑢𝑖𝑝+1…𝑖𝑘𝑦𝑖1𝑖2…𝑗𝑞−1…𝑢𝑗𝑞+1…𝑖𝑘 .
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Tensor Fundamentals
• The 𝑚 −mode 𝐙 ≜ 𝐗 ×𝑚 𝐘 product of k-th order tensor 𝐗

and a 𝑚 × 𝑛𝑚 matrix 𝐘 is a k-th order 𝑛1 × 𝑛2 ×⋯× 𝑛𝑀−1 ×
𝑚 × 𝑛𝑚+1 ×⋯× 𝑛𝑘 tensor defined as:

𝐙 = ۦ ۧ𝑿, 𝐘 𝑚,2.

• The outer product 𝐙 ≜ 𝐱⊗ 𝐲 of a 𝑚 − dimensional vector 𝐱
with a n-dimensional vector 𝐲 is a 𝑚 × 𝑛 matrix, given by:

𝑧𝑖𝑗 = 𝑥𝑖𝑦𝑗 .
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Tensor Fundamentals
• The outer product 𝐙 ≜ 𝐱⊗ 𝐘 of a m-dimensional vector 𝐱 and a

𝑘 − th order tensor 𝐘 , is a (𝑘 + 1) − th order tensor, defined by

multiplying all the elements of 𝒀 with each element of 𝐱:

𝑧𝑖𝑗𝑖𝑗2…𝑗𝑘 = 𝑥𝑖𝑦𝑗1𝑗2…𝑗𝑘.

• The outer product 𝐙 ≜ 𝐗⊗ 𝐘 of a 𝑘 − th order tensor 𝑿 and a 𝑙 − th

order tensor 𝒀 is a (𝑘 + 𝑙) − th order 𝑛1 × 𝑛2 ×⋯× 𝑛𝑘 ×𝑚1 ×𝑚2 ×
⋯×𝑚𝑙 tensor:

𝑧𝑖𝑖𝑖2…𝑖𝑘𝑗𝑖𝑗2…𝑗𝑙 = 𝑥𝑖1𝑖2…𝑖𝑘𝑦𝑗𝑖𝑗2…𝑗𝑙 .
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Tensor Fundamentals
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Rank 1 tensor.



Tensor Fundamentals
• The rank of a tensor 𝑟(𝐗) is the smallest integer 𝑟, which

indicates the number of the rank-one tensors, whose sum

generates 𝑿:

𝐗 = σ𝑖=1
𝑟 𝐁𝑖 ,

• 𝐁𝑖 , i = 1,2, … , 𝑟 are the rank-one tensors.

• This is a rank 𝑟 decomposition of tensor 𝐗.

• The two main types of tensor decomposition are PARAFAC

and Tucker decomposition.
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Tensor Fundamentals
Parallel Factor Analysis (PARAFAC) decomposes a 𝑘 − th order

tensor into a sum of 𝑅 rank-one tensors each composed of 𝑘 linear

components:

𝐗 =

𝑟=1

𝑅

𝜆𝑟𝐚𝑟
1
× 𝐚𝑟

2
×⋯× 𝐚𝑟

𝑘
, 𝐚𝑟

(1)
∈ ℝ𝑛1 , 𝐚𝑟

2
∈ ℝ𝑛2 , … , 𝐚𝑟

𝑘
∈ ℝ𝑛𝑘 .

• 𝜆𝑟 is a factor scaling the contribution of the 𝑟 −th rank-one tensor.

74PARAFAC tensor decomposition.



Tensor Fundamentals
Tucker decomposition decomposes a 𝑘 −th order tensor

into mode products of a core tensor 𝐒 ∈ ℝ𝑚1×𝑚2×⋯𝑚𝑘 and 𝑘

matrices 𝐀(𝑖) ∈ ℝ𝑛𝑖×𝑚𝑖 , 𝑖 = 1,… , 𝑘, each of them corresponding

to a mode of 𝐗:

𝐗 = 𝐒 ×1 𝐀
(1) ×2 𝐀

(2)…×𝑘 𝐀
𝑘 .

75Tucker tensor decomposition.
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Basic Linear Algebra 

Subprograms (BLAS) Library

Basic Linear Algebra Subprograms (BLAS) is a software

library of high-performance Linear Algebra routines.

• BLAS has three routine sets (“levels“).

• They correspond to both the chronological order of

definition and publication, as well as the degree of algorithm

complexity.
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Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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