Linear Algebra

Prof. Ioannis Pitas
Aristotle University of Thessaloniki pitas@csd.auth.gr
www.aiia.csd.auth.gr
version 3.0

Linear Algebra

- Vectors, matrices
- System of linear equations
- Eigenanalysis
- Singular value Decomposition
- Other matrix decompositions
- Tensors Fundamentals
- BLAS.

Vectors

A vector of dimension n is an 1D array of numbers:

$$
\mathbf{x}=\left[x_{1}, \ldots, x_{n}\right]^{T} \in \mathbb{R}^{n}
$$

- $x_{1}, \ldots, x_{n}: n$ vector coordinates.
- Vector inner product:

$$
\mathbf{x}^{T} \mathbf{y}=\sum_{k=1}^{n} x_{k} y_{k}
$$

Vectors

Geometrical vector interpretation:

- a point in a Euclidean space \mathbb{R}^{n}.
- Polar, spherical vector representation in $\mathbb{R}^{2}, \mathbb{R}^{3}$: magnitude $|\mathbf{x}|$ and direction angle(s).

Cartecian vector $x=[4,2]^{T}$ representation.

Matrices and tensors

A matrix A is a $n \times m$ table (2D array) of numbers:

$$
\mathbf{A}=\left[a_{i j}\right]=\left[\mathbf{a}_{1} \ldots \mathbf{a}_{m}\right]=\left[\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \cdots & \alpha_{1 m} \\
\alpha_{21} & \alpha_{22} & \cdots & \alpha_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{n 1} & \alpha_{n 2} & \cdots & \alpha_{n m}
\end{array}\right] .
$$

- $\mathbf{a}_{j}, j=1, \ldots, m$: matrix columns.
- k-th order tensor. A k-D array of numbers $\mathbf{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{k}}$.

Matrix Properties

- The multiplication of inverse matrix A^{-1} of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with matrix \mathbf{A} is the identity $n \times n$ matrix \mathbf{I} :

$$
\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I} .
$$

- It exists, if matrix determinant $\operatorname{det}(\mathbf{A}) \neq 0$.
- Inverse matrix properties:

$$
(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1} .
$$

- A square matrix that is not invertible is called singular.
- A is singular, if its rank is less than n.

Linear Algebra

- Vectors, matrices
- System of linear equations
- Eigenanalysis
- Singular value Decomposition
- Other matrix decompositions
- Tensors Fundamentals
- BLAS.

System of linear equations

System of linear equations

$$
A x=y
$$

- Unknown vector: $\mathbf{x} \in \mathbb{R}^{m}$.
- m equations:

$$
\left[\begin{array}{c}
y_{1} \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n m}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
. \\
. \\
x_{m}
\end{array}\right]
$$

System of linear equations

System of linear equations

$$
\mathbf{A x}=\mathbf{y}
$$

- If $m=n$ and \mathbf{A}^{-1} exists, the solution is:

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{y}
$$

- If $m>n$, the system is over-determined.
- Possibly no solution.
- If $m<n$, the system is under-determined.
- Possibly multiple solutions.

System of linear equations

Linear system of three variables:

- Each equation determines a plane in space \mathbb{R}^{3}.
- Their intersection point is the solution of the system.

Linear Algebra

- Vectors, matrices
- System of linear equations
- Eigenanalysis
- Singular value Decomposition
- Other matrix decompositions
- Tensors Fundamentals
- BLAS.

Eigenanalysis

- Eigenvectors and eigenvalues of a matrix are important as they provide fundamental information about a matrix.
- They allow easy determination as to whether a matrix is positive definite or not.
- Also allow determination as to whether a matrix is invertible and how sensitive to numerical errors the inverse will be.

Eigenanalysis

If \mathbf{A} is an $n \times n$ matrix, its eigenvalue λ and eigenvector \mathbf{v} satisfy:

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

Equivalently, they form a solution of the homogeneous linear equation system:

$$
\left(\mathbf{A}-\lambda \mathbf{I}_{n}\right) \mathbf{v}=0,
$$

where \mathbf{I}_{n} is a unitary $n \times n$ matrix.

Spectral Theorem

Matrix \mathbf{A} is guaranteed to be invertible, if $\lambda_{i} \neq 0$ for all $i=$ $1, \ldots, n$.
This is equivalent to matrix determinant being not equal to 0 :

$$
\operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} \lambda_{i} \neq 0 .
$$

- In practical Machine Learning and Computer Vision applications, matrices are estimated from sample data.
- Therefore may be ill-conditioned, if one or more of the eigenvalues are close to zero.

Positive definite matrices

Positive definite matrix definition:

$$
\mathbf{x}^{T} \mathbf{C} \mathbf{x}>0, \quad \forall \mathbf{x} \in \mathbb{R}^{n}
$$

for symmetric matrices \mathbf{C}.

- Eigenvalues of a positive definite matrix are positive:

$$
\lambda_{i}>0, i=1, \ldots, n .
$$

- Determinant of a positive definite matrix:

$$
\operatorname{det}(\mathbf{C})=\prod_{i=1}^{n} \lambda_{i}>0 .
$$

Linear Algebra

- Vectors, matrices
- System of linear equations
- Eigenanalysis
- Singular value Decomposition
- Other matrix decompositions
- Tensors Fundamentals
- BLAS

Singular Value Decomposition

Singular Value Decomposition
(SVD) deals with:

- Systems of equations whose matrices are singular or numerically very close to singular.
- Solving most Linear LeastSquares (LLS) problems.
- Providing low rank approximations.
matrix

Singular Value Decomposition

Any $n \times m$ matrix A can be decomposed into:

$$
\mathbf{A}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T},
$$

- $\mathbf{U}(n \times n$ orthogonal) unitary matrix,
- $\boldsymbol{\Sigma}(n \times m$ diagonal) matrix and
- $\mathbf{V}^{T}(m \times m$ orthogonal) unitary matrix.
- Singular values of \mathbf{A} are the $r=\min (n, m)$ $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}$ diagonal elements of $\boldsymbol{\Sigma}$.

Singular Value Decomposition

Singular Value Matrix Decomposition.

Cholesky decomposition

都

Cholesky matrix decomposition.

Cholesky decomposition

Cholesky matrix decomposition is mainly used for the numerical solution of linear equations $\mathbf{A x}=\mathbf{b}$, when \mathbf{A} is Symmetric Positive Definite (SPD) matrix.

- We first compute the matrix L as described above. Then, we solve the equation:

$$
\mathbf{L y}=\mathbf{b},
$$

where $\mathbf{y}=\mathbf{L}^{T} \mathbf{x}$, using forward substitution and, finally, we solve:

$$
\mathbf{L}^{T} \mathbf{x}=\mathbf{b},
$$

CUR Matrix Decomposition

- In CUR matrix approximation, the multiplication of three matrices $\mathbf{C} \in \mathbb{R}^{m \times c}, \mathbf{U} \in \mathbb{R}^{c \times r}, \mathbf{R} \in \mathbb{R}^{r \times n}$ closely approximate a given matrix \mathbf{A}, by minimizing the approximation error $\| \mathbf{A}$ - CUR $\|_{F}$.
- A CUR approximation can be used as low-rank approximation.

CUR Matrix Decomposition

CUR matrix approximation.

Non-negative matrix factorization

- Data matrix \mathbf{X} is an $n \times N$ matrix containing N data vectors $\mathbf{X}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right]$.
- It can be decomposed in a product of $n \times p$ and $p \times N$ matrices \mathbf{F} and \mathbf{H}, respectively:

$$
\mathbf{X}=\mathbf{F H} .
$$

- p is smaller than N and n.
- All elements of matrices \mathbf{F}, \mathbf{H} should be positive: $f_{i j} \geq 0$, $h_{k l} \geq 0$.

Non-negative matrix factorizatio VML

NMF image decomposition.

Other matrix decompositions

Some other matrix decompositions are:

- Polar decomposition, applicable to a square, complex matrix A: A = UP or A = $\mathbf{P}^{\prime} \mathbf{U}$.
- Mostow decomposition, applicable to a square, complex, non-singular matrix A: $\mathbf{A}=\mathbf{U} e^{i \mathbf{M}} e^{\mathbf{S}}$.
- Sinkhorn normal form, applicable to a square, real matrix A with strictly positive elements $\mathbf{A}=\mathbf{D}_{1} \mathbf{S D}_{2}$.
There are many more matrix decompositions.

Linear Algebra

- Vectors, matrices
- System of linear equations
- Eigenanalysis
- Singular value Decomposition
- Other matrix decompositions
- Tensor Fundamentals
- BLAS

Tensor Fundamentals

- A tensor is a multidimensional array of numerical values, whose elements are identified using multiple indices.
- The order (degree) of a tensor is equal to the dimensionality of its array.
- Tensors can be considered to be a generalization of scalars, vectors and matrices.
- A scalar $x \in \mathbb{R}$ is a $0^{\text {th }}$ order tensor, a vector $\mathbf{x} \in \mathbb{R}^{n_{1}}$ is a $1^{\text {st }}$ order tensor and a matrix $\mathbf{A} \in \mathbb{R}^{n_{1} \times n_{2}}$ is a $2^{\text {nd }}$ order tensor.

Tensor Fundamentals

- Color images and grayscale videos can be represented as 3D matrices (3 $3^{\text {rd }}$ order tensors), while color videos can be represented as 4D matrices ($4^{\text {th }}$ order tensors).
- In social media, tensors can be used to represent hypergraphs and multigraphs.

$3^{\text {rd }}$ order tensor.

Tensor Fundamentals

Tube fibers $X_{(: j k)}$ of $3^{\text {rd }}$ order tensor.

Horizontal slices $X_{(i::)}$ of a $3^{\text {rd }}$ order tensor.

Tensor Fundamentals

- The Frobenius norm of a k-th order $n_{1} \times n_{2} \times \cdots \times n_{k}$ tensor $\mathbf{X} \in$ $\mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{k}}$ is defined as:

$$
\|\mathbf{X}\|_{F} \triangleq \sqrt{\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} X_{i_{1} i_{2} \ldots i_{k}}^{2}} .
$$

It can be used to measure the distance between tensors \mathbf{X} and \mathbf{Y} :

$$
d(X-Y)=\|\mathbf{X}-\mathbf{Y}\|_{F}=\sqrt{\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}}\left(X_{i_{1} i_{2} \ldots i_{k}}-Y_{i_{1} i_{2} \ldots i_{k}}\right)^{2}} .
$$

Tensor Fundamentals

- The inner product $z \triangleq\langle\mathbf{X}, \mathbf{Y}\rangle$ of the k-th order $n_{1} \times n_{2} \times$ $\cdots \times n_{k}$ tensors \mathbf{X}, \mathbf{Y} is a scalar value define as:

$$
z \triangleq \sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \ldots \sum_{i_{k}=1}^{n_{k}} X_{i_{1} i_{2} \ldots i_{k}} Y_{i_{1} i_{2} \ldots i_{k}} .
$$

- The inner product $\mathbf{Z} \triangleq\langle\mathbf{X}, \mathbf{Y}\rangle_{p, q}$ of a k-th order tensor \mathbf{X} and a l-th order tensor $\mathbf{Y}\left(n_{p}=m_{q}=U\right)$ is a $(k+l-1)$-th order $n_{1} \times n_{2} \times \cdots \times n_{p-1} \times n_{p+1} \times \cdots \times n_{K} \times m_{1} \times m_{2} \times \cdots \times$ $m_{q-1} \times m_{q+1} \times \cdots \times m_{l}$ tensor:
$z_{i_{1} i_{2} \ldots i_{p-1} i_{p+1} \ldots i_{k} j_{1} j_{2} \ldots j_{q-1} j_{q+1} \ldots j_{l}} \triangleq \sum_{u=1}^{U} x_{i_{1} i_{2} \ldots i_{p-1} u i_{p+1} \ldots i_{k} y_{i_{1} i_{2} \ldots j_{q-1} \ldots u j_{q+1 \ldots} . . i_{k}} .}$

Tensor Fundamentals

- The m-mode $\mathbf{Z} \triangleq \mathbf{X} \times_{m} \mathbf{Y}$ product of k-th order tensor \mathbf{X} and a $m \times n_{m}$ matrix \mathbf{Y} is a k-th order $n_{1} \times n_{2} \times \cdots \times n_{M-1} \times$ $m \times n_{m+1} \times \cdots \times n_{k}$ tensor defined as:

$$
\mathbf{Z}=\langle\boldsymbol{X}, \mathbf{Y}\rangle_{m, 2} .
$$

- The outer product $\mathbf{Z} \triangleq \mathbf{x} \otimes \mathbf{y}$ of a m-dimensional vector \mathbf{x} with a n-dimensional vector y is a $m \times n$ matrix, given by:

$$
z_{i j}=x_{i} y_{j}
$$

Tensor Fundamentals

- The outer product $\mathbf{Z} \triangleq \mathbf{x} \otimes \mathbf{Y}$ of a m-dimensional vector \mathbf{x} and a $k-$ th order tensor \mathbf{Y}, is a $(k+1)$-th order tensor, defined by multiplying all the elements of \boldsymbol{Y} with each element of \mathbf{x} :

$$
z_{i j_{i} j_{2} \ldots j_{k}}=x_{i} y_{j_{1} j_{2} \ldots j_{k}} .
$$

- The outer product $\mathbf{Z} \triangleq \mathbf{X} \otimes \mathbf{Y}$ of a k - th order tensor \boldsymbol{X} and a l - th order tensor Y is a $(k+l)-$ th order $n_{1} \times n_{2} \times \cdots \times n_{k} \times m_{1} \times m_{2} \times$ $\cdots \times m_{l}$ tensor:

$$
z_{i_{i} i_{2} \ldots i_{k} j_{i} j_{2} \ldots j_{l}}=x_{i_{1} i_{2} \ldots i_{k}} y_{j_{i} j_{2} \ldots j_{l}} .
$$

Tensor Fundamentals

Rank 1 tensor.

Tensor Fundamentals

- The rank of a tensor $r(\mathbf{X})$ is the smallest integer r, which indicates the number of the rank-one tensors, whose sum generates X :

$$
\mathbf{X}=\sum_{i=1}^{r} \mathbf{B}_{i},
$$

- $\mathbf{B}_{i}, \mathrm{i}=1,2, \ldots, r$ are the rank-one tensors.
- This is a rank r decomposition of tensor \mathbf{X}.
- The two main types of tensor decomposition are PARAFAC and Tucker decomposition.

Tensor Fundamentals

Parallel Factor Analysis (PARAFAC) decomposes a k-th order tensor into a sum of R rank-one tensors each composed of k linear components:

$$
\mathbf{X}=\sum_{r=1}^{R} \lambda_{r} \mathbf{a}_{r}^{(1)} \times \mathbf{a}_{r}^{(2)} \times \cdots \times \mathbf{a}_{r}^{(k)}, \quad \mathbf{a}_{r}^{(1)} \in \mathbb{R}^{n_{1}, \mathbf{a}_{r}^{(2)} \in \mathbb{R}^{n_{2}}, \ldots, \mathbf{a}_{r}^{(k)} \in \mathbb{R}^{n_{k}}}
$$

- λ_{r} is a factor scaling the contribution of the r-th rank-one tensor.

Tensor Fundamentals

Tucker decomposition decomposes a k-th order tensor into mode products of a core tensor $\mathbf{S} \in \mathbb{R}^{m_{1} \times m_{2} \times \cdots m_{k}}$ and k matrices $\mathbf{A}^{(i)} \in \mathbb{R}^{n_{i} \times m_{i}}, i=1, \ldots, k$, each of them corresponding to a mode of \mathbf{X} :

$$
\mathbf{X}=\mathbf{S} \times_{1} \mathbf{A}^{(1)} \times_{2} \mathbf{A}^{(2)} \ldots \times_{k} \mathbf{A}^{(k)}
$$

Linear Algebra

- Vectors, matrices
- System of linear equations
- Eigenanalysis
- Singular value Decomposition
- Other matrix decompositions
- Tensor Fundamentals
- BLAS

Basic Linear Algebra Subprograms (BLAS) Library

Basic Linear Algebra Subprograms (BLAS) is a software library of high-performance Linear Algebra routines.

- BLAS has three routine sets ("levels").
- They correspond to both the chronological order of definition and publication, as well as the degree of algorithm complexity.

Q \& A

Thank you very much for your attention!
More material in
http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

