
Introduction to ROS

summary

A. Angelou, I. Karakostas, Prof. Ioannis Pitas

Aristotle University of Thessaloniki

pitas@csd.auth.gr

www.aiia.csd.auth.gr

Version 1.2

What is ROS?

• ROS stands for “Robotic Operating System”

• It’s not an operating system, but a development tool

• Runs through Linux

• Is Open Source

• Supports C++ and Python programming languages

ROS Applications

• ROS is used:

• For research purposes

• In Research and Development (R&D) Departments in Industry

• By individuals for personal projects

• ROS can be used in a wide range of applications such as:

• Autonomous Driving

• Controlling Robotic Arms

• Drones

• Object Detection/Tracking

• Gesture Recognition

3

BlueROV2 [BLRV]

IRB 120 Robot [ABB]

ROS Distributions

The most stable and recent ROS Distributions are:
• ROS Melodic Morenia (Ubuntu 18.04 - Bionic Beaver)

• ROS Noetic Ninjemys (Ubuntu 20.04 - Focal)

5http://wiki.ros.org/Distributions

ROS Hardware

6

NVIDIA Jetson Nano
[NVID]

For ROS application can be used a variety of computer boards:

• Raspbery Pi (Raspberry Pi 4 B)

• PC motherboards (Ashrock X570 Extreme4)

• Embedded motherboards (Nvidia Jetson Nano)

ASHROCK PC Motherboard
[ASHR]

Raspberry Pi 4
[RASP]

Robot Hardware Architecture

Example of Drone

Hardware

Block Diagram

8

7

Control Unit
Gyroscope 1

Gyroscope 2

Gyroscope 3

Camera

LIDAR

Altimeter

GSM/GPS

MOTOR 1

MOTOR 2

MOTOR 3

MOTOR 4

MOTOR 5

MOTOR 6

Robot Software Architecture

Example of Drone Software Block Diagram

9

Camera Driver

GIMBAL Driver

Object Detector
Algorithm

Object Tracker
Algorithm

GIMBAL Control

DISPLAY
Driver

ROS communication

• Topics: Used for sending or reading messages of specific types.

• Services: Used for synchronous client/server communication. (e.g.

change a setting, trigger a task – start detection/tracking).

• Actions: They are based on topics and provide an asynchronous
client/server architecture. The client can send a request that takes a long
time and can asynchronously monitor the state of the server.

ROS Master

• The ROS Master is the coordinator of the communication between

nodes.

• All Nodes, Topics Services are registered to ROS Master.

• When a Node wants to sent a message to a Topic or exchange

messages with another Node, ROS Master provides a way to the

Nodes to locate each other.

• After the Nodes identify each other, they are communicating

22

ROS Master

23

Chemical
Sensor Node

Chem_Data
Type: Floating Point

ROS MASTER

Plot
Node

Type: Floating Point

TOPIC

• When a Node wants to publish a message to a Topic, the Publisher

Node notify ROS Master to send data to the Topic.

ROS Master

24

Chemical
Sensor Node

Chem_Data
Type: Floating Point

ROS MASTER

Plot
Node

Type: Floating Point

TOPIC

• After the notification, the Publisher Node establishes connection the

Topic. At this point, the publisher doesn’t send any message to the

Topic unless a Subscriber Node notify ROS Master.

ROS Master

25

Chemical
Sensor Node

Chem_Data
Type: Floating Point

ROS MASTER

Plot
Node

Type: Floating Point

TOPIC

• When an Subsciber Node wants to subscibe to a message from a

Topic, the Subsciber Node notifies ROS Master to connect to the

Topic.

ROS Master

26

Chemical
Sensor Node

Chem_Data
Type: Floating Point

ROS MASTER

Plot
Node

Type: Floating Point

TOPIC

• After the notification, the Subsciber Node connects to the Topic.

• At this point the Publisher Node publishes the data to the Topic and

the Subsciber, subscibes to the Topic.

• The data is transmitted from the Publisher Node to the Subsciber

Node through the Topic.

ROS Core

• ROS core is a collection of routines,

nodes, libraries that are essential for

ROS system

• It runs at the background.

• ROS Core starts the ROS Master to

enable the registration of all Nodes,

Topics and Services.

27

rosout

ROS Parameter
Server

ROS Master

ROS Tools

29

ROS provides a variety of tools to build, debug and

simulate . The Most common tools are:

• Catkin

• rqt_graph

• Opencv Library

• Gazebo

Catkin

30

• Catkin is a tool that is included with ROS and it

is used to build packages.

• The name Catkin was given by the Willow

Garage Company that created ROS.

• It was created for easy package installation and

distribution.

• It consist of macro instructions and scripts to

build packages
Image of male Catkin

[CTKN]

Rqt graph

31

• Rqt_graph is GUI tool that shows the function of all nodes

and topics of a ROS project.

A typical rqt_graph showing the nodes and topics at a graph level
[RQTG]

OpenCV Library

32

• OpenCV is an open-source library for computer vision,

machine learning and real-time applications. The library

includes functions for:

• Object Detection

• Deep Neural Networks

• Machine Learning

• Image Processing

• Video Analysis

• 3D Reconstruction with Camera

• Image or Video Input and Output

Gazebo

33

• Gazebo is a simulator for testing and training robots using

realistic scenarios in virtual environments

A simulation of a scenario with various robots in Gazebo
[GZBO]

ROS File System

• ROS nodes and packages are organized in a specific way.

• It is common to define a workspace for each ROS application (e.g.,

icarus_ws).

• The location of this workspace can be anywhere in our system.

34The image is from the paper [RRSham]

ROS Workspace

• A typical ROS workspace structure can be:

• ros_ws/

• src/

• build/

• devel/

• logs/

• The directories build, logs and devel

are auto-generated when building the

workspace (e.g., with catkin build).

35

ROS Node in Python
import rospy, rospkg

def main(args):

rospy.init_node(‘TestNode', anonymous=True, log_level=rospy.DEBUG)

try:

rospy.spin()

except KeyboardInterrupt:

print("Shutting down")

ROS Publisher in Python
import rospy, rospkg, cv2

from cvbridge import CvBridge, CvBridgeError

from sensor_msgs.msg import Image

image_pub = rospy.Publisher(“image_topic/camera_raw", Image,
queue_size=1)

cv_image = cv2.imread('file/path.jpg’)

while True:

pub_frame = self.bridge.cv2_to_imgmsg(cv_image, "bgr8")

self.image_pub.publish(pub_frame)

ROS Subscriber in Python
import rospy, rospkg

from cvbridge import CvBridge, CvBridgeError

from sensor_msgs.msg import Image

image_sub = rospy.Subscriber(“image_topic/camera_raw",

Image, self.image_callback, queue_size=1,

buff_size=2 ** 24)

ROS Subscriber in Python
def image_callback(self, data):

try:

cv_image = self.bridge.imgmsg_to_cv2(data, "rgb8")

self.img = cv_image

rospy.loginfo("img")

except CvBridgeError as e:

print e

self.img = None

return

maybe do something else here with the Image?

return

Object Detector and Tracker

44

Q & A

Thank you very much for your attention!

More material in

http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas

pitas@csd.auth.gr

47

