

Geometry summary

Dr. I. Mademlis, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 2.6

- 3D geometric transformations
- Projective geometry

- Vectors of the form $\mathbf{P} = [X, Y, Z]^T$ define point positions in the 3D space \mathbb{R}^3 .
- Vectors of the form $\mathbf{p} = [x, y]^T$ define point positions in the 2D space \mathbb{R}^2 .
- The right-hand thumb rule is typically followed when defining the axis system (X, Y, Z) in \mathbb{R}^3 .

Inner vector product or dot product in \mathbb{R}^3 : $\mathbf{P}_1^T \mathbf{P}_2 = \mathbf{P}_1 \mathbf{P}_2^T = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2$ $= \|\mathbf{P}_1\| \cdot \|\mathbf{P}_2\| \cos \theta$.

• θ : the angle formed by the two vectors.

 \mathbf{P}_{2}

 $\mathbf{P}_1 \times \mathbf{P}_2$

Cross vector product $\mathbf{P}_1 \times \mathbf{P}_2$ in \mathbb{R}^3 :

$$\mathbf{P}_{1} \times \mathbf{P}_{2} = (Y_{1}Z_{2} - Z_{1}Y_{2})\mathbf{i} + (Z_{1}X_{2} - X_{1}Z_{2})\mathbf{j} + (X_{1}Y_{2} - Y_{1}X_{2})\mathbf{k}.$$

i, j, k: the standard basis vectors of R³.
It is a vector perpendicular to plane defined by vectors P₁, P₂.

≻P₁

- Vector calculus
- 3D geometric transformations
- Projective geometry

3D geometric transformations

• **3D solid object** motions is superposition of a 3D rotation and a 3D translation:

 $\mathbf{X}' = \mathbf{R}\mathbf{X} + \mathbf{T}$

- $\mathbf{X} = [X, Y, Z]^T$, $\mathbf{X}' = [X', Y', Z']^T$: the coordinates of a solid object point at time instances *t* and *t*'.
- $\mathbf{T} = [T_X, T_Y, T_Z]^T$: a 3D translation vector.
- Rotation can precede translation, or vice versa:

 $\mathbf{X}' = \mathbf{R}(\mathbf{X} + \mathbf{T}).$

3D geometric transformations (VML

- **R** is a 3×3 rotation matrix, which can be defined by either:
 - The Euler rotation angles about *X*,*Y*,*Z* axes (in Cartesian coordinates)
 - a unitary rotation axis and a rotation angle about this axis.
- $\mathbf{T} = [T_X, T_Y, T_Z]^T$: a 3D translation vector.

3D geometric transformations (VML

- An arbitrary rotation in the 3D space can be represented by the Euler rotation angles θ, ψ, ϕ about the *X*,*Y*,*Z* axes.
- Each can be described by a 1D rotation matrix, leading to:

 $\mathbf{R} = \mathbf{R}_Z \mathbf{R}_Y \mathbf{R}_X.$

3D geometric transformations

 3D rotation can also be represented by *quaternions* that are extensions of complex numbers:

$$\mathbf{q} = q_0 + q_1 \mathbf{i} + q_2 \mathbf{j} + q_3 \mathbf{k}.$$

• q_0, q_1, q_2, q_3 are real numbers and:

$$i^2 = j^2 = k^2 = ijk = -1.$$

 $q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1.$

• Unit quaternion $\mathbf{q}_R = [q_0 \ q_1 \ q_2 \ q_3]^T$ satisfies:

3D geometric transformations

• Rotation by an angle α around a unit vector $[n_1, n_2, n_3]^T$:

$$\mathbf{q} = \begin{bmatrix} n_1 \sin \frac{\alpha}{2} & n_2 \sin \frac{\alpha}{2} & n_3 \sin \frac{\alpha}{2} & \cos \frac{\alpha}{2} \end{bmatrix}^T.$$

• Rotation matrix **B** corresponding to a certain quaternion:

 $\mathbf{R} = \begin{bmatrix} q_0^2 - q_1^2 - q_2^2 - q_3^2 & 2(q_0q_1 + q_2q_3) & 2(q_0q_2 - q_1q_3) \\ 2(q_0q_1 - q_2q_3) & -q_0^2 + q_1^2 - q_2^2 + q_3^2 & 2(q_1q_2 + q_0q_3) \\ 2(q_0q_2 + q_1q_3) & 2(q_1q_2 - q_0q_3) & -q_0^2 + q_1^2 + q_2^2 + q_3^2 \end{bmatrix}$

- Vector calculus
- 3D geometric transformations
- Projective geometry

- *Homogeneous coordinates* are basic concept in projective geometry.
- Assuming an Euclidean plane \mathbb{R}^2 and a Cartesian coordinate system defined on it, $\mathbf{p} = [x, y]^T$, we assign the ordered 3-tuple $[x_h, y_h, a]^T$ to \mathbf{p} , where $a \in \mathbb{R}$, $a \neq 0, x = x_h/a, y = y_h/a$.
- The homogeneous coordinates $[x_h, y_h, a]^T$ define the projective plane \mathbb{P}^2 .
 - Exactly one Euclidean point corresponds to each 3-tuple $[x_h, y_h, a]^T$.
 - But both $[x_h, y_h, a]^T$ and $[\lambda x_h, \lambda y_h, \lambda a]^T$ 3-tuples correspond to the same Euclidean coordinates $[x, y]^T$, where $\lambda \in \mathbb{R}, \lambda \neq 0$.
 - Canonical form $[x_h, y_h, 1]^T$.
 - The projective plane can be defined over the real or the complex field $x_h, y_h, a \in \mathbb{C}$.

- Assuming a 3D Euclidean space \mathbb{R}^3 and a Cartesian coordinate system defined on it, $\mathbf{P} = [X, Y, Z]^T$, we assign the ordered 4-tuple $[X_h, Y_h, Z_h, a]^T$ to \mathbf{P} , where $a \in \mathbb{R}, a \neq 0, X = X_h/a, Y = Y_h/a, Z = Z_h/a$.
- The homogeneous coordinates $[X_h, Y_h, Z_h, a]^T$ define the projective space \mathbb{P}^3 .
 - Exactly one Euclidean point corresponds to each 4-tuple $[X_h, Y_h, Z_h, a]^T$.
 - But both 4-tuples $[X_h, Y_h, Z_h, a]^T$ and $[\lambda X_h, \lambda Y_h, \lambda Z_h, \lambda a]^T$ correspond to the same 3D Euclidean coordinates $[X, Y, Z]^T$, where $\lambda \in \mathbb{R}, \lambda \neq 0$.
 - $[X_h, Y_h, Z_h, 1]^T$.

Pinhole camera: projection of the 3D world \mathbb{R}^3 on an image plane \mathbb{R}^2 .

Camera Coordinate System

Vanishing points

V3

A bit of History...

a) Pompei mural of the pageant of Orestes [TYL2000]; b) Byzantine icon;

A bit of History...

a) The Disputation of St Stephen' Carpaccio (1514) [TYL2000]; b) Canaletto painting.

Artificial Intelligence & Information Analysis Lab

- *Projective transformation*: a product of rotations and translations in 3D ray space, forming a 3×3 matrix.
- Projection of a point ${f P}$ in ${\Bbb P}^3$ to a point ${f p}$ in ${\Bbb P}^2$:

$$\mathbf{p} = \mathcal{P}\mathbf{P}$$

• Perspective transformation: Special case of projective

transformation.

• The cross-ratio of four collinear points remains invariant under a projective transformation: $C_r(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4) =$ $C_r(\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3, \mathbf{P}_4).$

- The cross-ratio invariance is useful for defining and constructing conic sections (curves like circles, ellipses, parabolas and hyperbolas) in the projective plane \mathbb{P}^2 .
- Conic: a set of points in \mathbb{P}^2 which satisfy:

$\mathbf{p}^T \mathbf{C} \mathbf{p} = \mathbf{0}$

C: a symmetric 3×3 matrix containing the equation coefficients of the conic section.

• Conic sections (circles, ellipses, parabolas and hyperbolas) in the projective plane \mathbb{P}^2 .

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

