Geometry summary

Dr. I. Mademlis, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr

Version 2.6

Geometry

- Vector calculus
-3D geometric transformations
- Projective geometry

Vector calculus

- Vectors of the form $\mathbf{P}=[X, Y, Z]^{T}$ define point positions in the 3D space \mathbb{R}^{3}.
- Vectors of the form $\mathbf{p}=[x, y]^{T}$ define point positions in the 2 D space \mathbb{R}^{2}.
- The right-hand thumb rule is typically followed when defining the axis system (X, Y, Z) in \mathbb{R}^{3}.

Vector calculus

Inner vector product or dot product in \mathbb{R}^{3} :

$$
\begin{aligned}
\mathbf{P}_{1}^{T} \mathbf{P}_{2}=\mathbf{P}_{1} \mathbf{P}_{2}^{T} & =X_{1} X_{2}+Y_{1} Y_{2}+Z_{1} Z_{2} \\
& =\left\|\mathbf{P}_{1}\right\| \cdot\left\|\mathbf{P}_{2}\right\| \cos \theta .
\end{aligned}
$$

- θ : the angle formed by the two vectors.

Vector calculus

Cross vector product $\mathbf{P}_{1} \times \mathbf{P}_{2}$ in \mathbb{R}^{3} :

$$
\begin{aligned}
\mathbf{P}_{1} \times \mathbf{P}_{2}=\left(Y_{1} Z_{2}-Z_{1} Y_{2}\right) \mathbf{i} & +\left(Z_{1} X_{2}-X_{1} Z_{2}\right) \mathbf{j} \\
& +\left(X_{1} Y_{2}-Y_{1} X_{2}\right) \mathbf{k} .
\end{aligned}
$$

- $\mathbf{i}, \mathbf{j}, \mathbf{k}$: the standard basis vectors of \mathbb{R}^{3}.
- It is a vector perpendicular to plane definea by vectors $\mathbf{P}_{1}, \mathbf{P}_{2}$.

Geometry

- Vector calculus
-3D geometric transformations
- Projective geometry

3D geometric transformations

- 3D solid object motions is superposition of a 3D rotation and a 3D translation:

$$
\mathbf{X}^{\prime}=\mathbf{R X}+\mathbf{T}
$$

- $\mathbf{X}=[X, Y, Z]^{T}, \mathbf{X}^{\prime}=\left[X^{\prime}, Y^{\prime}, Z^{\prime}\right]^{T}$: the coordinates of a solid object point at time instances t and t^{\prime}.
- $\mathbf{T}=\left[T_{X}, T_{Y}, T_{Z}\right]^{T}$: a 3D translation vector.
- Rotation can precede translation, or vice versa:

$$
\mathbf{X}^{\prime}=\mathbf{R}(\mathbf{X}+\mathbf{T}) .
$$

3D geometric transformations

- \mathbf{R} is a 3×3 rotation matrix, which can be defined by either:
- The Euler rotation angles about X, Y, Z axes (in Cartesian coordinates)
- a unitary rotation axis and a rotation angle about this axis.
- $\mathbf{T}=\left[T_{X}, T_{Y}, T_{Z}\right]^{T}$: a 3D translation vector.

3D geometric transformations

- An arbitrary rotation in the 3D space can be represented by the Euler rotation angles θ, ψ, ϕ about the X, Y, Z axes.
- Each can be described by a 1D rotation matrix, leading to:

$$
\mathbf{R}=\mathbf{R}_{Z} \mathbf{R}_{Y} \mathbf{R}_{X}
$$

3D geometric transformations

-3D rotation can also be represented by quaternions that are extensions of complex numbers:

$$
\mathbf{q}=q_{0}+q_{1} \mathbf{i}+q_{2} \mathbf{j}+q_{3} \mathbf{k} .
$$

- $q_{0}, q_{1}, q_{2}, q_{3}$ are real numbers and:

$$
\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i j} \mathbf{k}=-1 .
$$

- Unit quaternion $\mathbf{q}_{R}=\left[q_{0} q_{1} q_{2} q_{3}\right]^{T}$ satisfies:

$$
q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}=1 .
$$

3D geometric transformations

- Rotation by an angle α around a unit vector $\left[n_{1}, n_{2}, n_{3}\right]^{T}$:

$$
\mathbf{q}=\left[\begin{array}{llll}
n_{1} \sin \frac{\alpha}{2} & n_{2} \sin \frac{\alpha}{2} & n_{3} \sin \frac{\alpha}{2} & \cos \frac{\alpha}{2}
\end{array}\right]^{T}
$$

- Rotation matrix B corresponding to a certain quaternion:

$$
\mathbf{R}=\left[\begin{array}{ccc}
q_{0}^{2}-q_{1}^{2}-q_{2}^{2}-q_{3}^{2} & 2\left(q_{0} q_{1}+q_{2} q_{3}\right) & 2\left(q_{0} q_{2}-q_{1} q_{3}\right) \\
2\left(q_{0} q_{1}-q_{2} q_{3}\right) & -q_{0}^{2}+q_{1}^{2}-q_{2}^{2}+q_{3}^{2} & 2\left(q_{1} q_{2}+q_{0} q_{3}\right) \\
2\left(q_{0} q_{2}+q_{1} q_{3}\right) & 2\left(q_{1} q_{2}-q_{0} q_{3}\right) & -q_{0}^{2}+q_{1}^{2}+q_{2}^{2}+q_{3}^{2}
\end{array}\right] .
$$

Geometry

- Vector calculus
-3D geometric transformations
- Projective geometry

Projective geometry

- Homogeneous coordinates are basic concept in projective geometry.
- Assuming an Euclidean plane \mathbb{R}^{2} and a Cartesian coordinate system defined on it, $\mathbf{p}=[x, y]^{T}$, we assign the ordered 3-tuple $\left[x_{h}, y_{h}, a\right]^{T}$ to \mathbf{p}, where $a \in$ $\mathbb{R}, a \neq 0, x=x_{h} / a, y=y_{h} / a$.
- The homogeneous coordinates $\left[x_{h}, y_{h}, a\right]^{T}$ define the projective plane \mathbb{P}^{2}.
- Exactly one Euclidean point corresponds to each 3-tuple $\left[x_{h}, y_{h}, a\right]^{T}$.
- But both $\left[x_{h}, y_{h}, a\right]^{T}$ and $\left[\lambda x_{h}, \lambda y_{h}, \lambda a\right]^{T}$ 3-tuples correspond to the same Euclidean coordinates $[x, y]^{T}$, where $\lambda \in \mathbb{R}, \lambda \neq 0$.
- Canonical form $\left[x_{h}, y_{h}, 1\right]^{T}$.
- The projective plane can be defined over the real or the complex field $x_{h}, y_{h}, a \in \mathbb{C}$.

Projective geometry

- Assuming a 3D Euclidean space \mathbb{R}^{3} and a Cartesian coordinate system defined on it, $\mathbf{P}=[X, Y, Z]^{T}$, we assign the ordered 4-tuple $\left[X_{h}, Y_{h}, Z_{h}, a\right]^{T}$ to \mathbf{P}, where $a \in \mathbb{R}, a \neq 0, X=X_{h} / a, Y=Y_{h} / a, Z=Z_{h} / a$.
- The homogeneous coordinates $\left[X_{h}, Y_{h}, Z_{h}, a\right]^{T}$ define the projective space \mathbb{P}^{3}.
- Exactly one Euclidean point corresponds to each 4-tuple $\left[X_{h}, Y_{h}, Z_{h}, a\right]^{T}$.
- But both 4 -tuples $\left[X_{h}, Y_{h}, Z_{h}, a\right]^{T}$ and $\left[\lambda X_{h}, \lambda Y_{h}, \lambda Z_{h}, \lambda a\right]^{T}$ correspond to the same 3D Euclidean coordinates $[X, Y, Z]^{T}$, where $\lambda \in \mathbb{R}, \lambda \neq 0$.
- $\left[X_{h}, Y_{h}, Z_{h}, 1\right]^{T}$.

Projective geometry

Pinhole camera: projection of the 3D world \mathbb{R}^{3} on an image plane \mathbb{R}^{2}.

Projective geometry

Vanishing points

A bit of History...

a) Pompei mural of the pageant of Orestes [TYL2000];
b) Byzantine icon;

Artificial Intelligence \&
Information Analysis Lab

A bit of History...

a) The Disputation of St Stephen' Carpaccio (1514) [TYL2000]; b) Canaletto painting.

Projective geometry

- Projective transformation: a product of rotations and translations in 3D ray space, forming a 3×3 matrix.
- Projection of a point \mathbf{P} in \mathbb{P}^{3} to a point \mathbf{p} in \mathbb{P}^{2} :

$$
\mathrm{p}=\mathcal{P} \mathrm{P}
$$

- Perspective transformation: Special case of projective transformation.

Projective geometry

- The cross-ratio of four collinear points remains invariant under a projective transformation: $C_{r}\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}, \mathbf{p}_{4}\right)=$ $C_{r}\left(\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \mathbf{P}_{4}\right)$.

Projective geometry

- The cross-ratio invariance is useful for defining and constructing conic sections (curves like circles, ellipses, parabolas and hyperbolas) in the projective plane \mathbb{P}^{2}.
- Conic: a set of points in \mathbb{P}^{2} which satisfy:

$$
\mathbf{p}^{T} \mathbf{C} \mathbf{p}=0
$$

C: a symmetric 3×3 matrix containing the equation coefficients of the conic section.

Projective geometry

- Conic sections (circles, ellipses, parabolas and hyperbolas) in the projective plane \mathbb{P}^{2}.

Q \& A

Thank you very much for your attention!
More material in
http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

