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Dimensionality Reduction

• Given a data sample 𝐱 ∈ ℝ𝑛 , compute a new sample

representation of reduced dimensionality ො𝐱 ∈ ℝ𝑑.

• Typically, lower dimensionality satisfies 𝑑 ≪ 𝑛.
• The representation ො𝐱 is meant:

• to capture relevant high level information from the initial

sample 𝐱;
• provide abstraction from detail;

• increase robustness to noise;

• if 𝑑 = 2, dimensionality reduction to ො𝐱 ∈ ℝ2 , allows data

mapping for visualization;

• Helps us solving the curse of dimensionality problem.



Dimensionality Reduction

Binary human 

body image.

Posture image

of fixed size.

Posture vector

𝐩 ∈ ℝ𝐻𝑊.

Posture visualization 

𝐲 ∈ ℝ2.

• Example: Human posture visualization.

• Dimensionality reduction from 𝐩 ∈ ℝ𝐻𝑊 to 𝐲 ∈ ℝ2



Feature selection

• This is the easiest way to do dimensionality reduction.

• Given 𝑁 samples 𝐱𝑗 = 𝑥1𝑗 , 𝑥2𝑗 , … , 𝑥𝑛𝑗
𝑇
∈ ℝ𝑛, 𝑗 = 1, … , 𝑁, only

the 𝑑 most informative features are retained, forming a new

sample representation of reduced dimensionality ො𝐱𝑗 ∈ ℝ𝑑.

• For a two-class problem:

• Feature 𝑥𝑖𝑗 , 𝑗 = 1,… , 𝑁 pdf location estimates should be far

apart.

• Feature 𝑥𝑖𝑗 , 𝑗 = 1,… , 𝑁 pdf dispersion estimates should be

small.



Feature selection

Feature selection in the 2D space.



• Let 𝐯1 be a principal component or principal direction vector

satisfying:

𝐯1
𝑇𝐯1 = 1.

• A set of 𝑁 points 𝐱𝑖 ∈ ℝ𝑛, 𝑖 = 1, … , 𝑁, be approximated by their

projection on a unit vector 𝐯1:

𝐚𝑖 = (𝐱𝑖
𝑇𝐯1) 𝐯1 = (𝐯1

𝑇𝐱𝑖) 𝐯1.

• The approximation error vector becomes:

𝐛𝑖 = 𝐱𝑖 − 𝐚𝑖 = 𝐱𝑖 − 𝐱𝑖
𝑇𝐯1 𝐯1.

Principal Component 

Analysis
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Principal Component Analysis (PCA):

If 𝐯1 , 𝐯2 ,..., 𝐯𝑑 are unit vectors 𝐯𝑖
𝑇𝐯𝑖 = 1 that are

perpendicular to each other: 𝐯𝑖
𝑇𝐯𝑗 = 0, (𝑖 ≠ 𝑗) form a basis

of the a 𝑑 -dimensional space ℝ𝑑 , and if ො𝐱 is the

representation of the 𝑛 -dimensional vector 𝐱:

ො𝐱 =

𝑗=1

𝑑

(𝐯𝑗
𝑇𝐱)𝐯𝑗 ,

• 𝐯𝑗 , 𝑗 = 1,… , 𝑑: basis vectors forming a new coordinate 

system in the  𝑑-dimensional space ℝ𝑑 .

Principal Component 

Analysis



Eigenfaces:

• Reduce facial image (vector 𝐱) dimensionality.

• 𝐯𝑖 , 𝑖 = 1, … , 𝑑: basis image vectors (eigenfaces).

• A facial image is express as a weighted sum of eigenfaces:

ො𝐱 = σ𝑗=1
𝑑 (𝐯𝑗

𝑇𝐱)𝐯𝑗 .
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Analysis

a) Facial image; b) Example eigenfaces.



• PCA can be performed on the autocorrelation matrix

𝐑𝐗 = 𝐸 𝐗𝐗𝑇 of random vectors 𝐗 belonging to data

set 𝒟, instead of working on data samples that form

matrix 𝐗 resulting in matrix 𝐗𝐗𝑇.

• PCA can be applied after centering the data at their

arithmetic mean vector:

𝐱𝑖
′ = 𝐱𝑖 −

σ𝑖=1
𝑁 𝐱𝑖
𝛮

.
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Geometrical axes translation/rotation.
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• Similarly, PCA can be performed on ψοωαριανψε matrix 

𝐂𝐗of random vectors 𝐗 belonging to data set 𝒟:

𝐂𝐗 = 𝐸 𝐗 −𝐦𝐗 𝐗 −𝐦𝐗
𝑇 .

• As:

𝐑𝐗 = 𝐂𝐗+𝐦𝐗 𝐦𝐗
𝑇 ,

a large expected vector 𝐦𝐗 of random vector 𝐗 may

dominate𝐑𝐗, hence greatly influencing its eigenanalysis.

Principal Component 

Analysis



Influence of expected (mean) vectors on PCA.

Principal Component 

Analysis



• PCA does not employ class information.

• Efficient representation does not mean efficient

classification between two classes!

• Eigenanalysis does not necessarily result in discriminant

data representation.

Principal Component 

Analysis



Principal Component 

Analysis

Discriminant power of principal components.



Linear Discriminant 

Analysis

Linear Discriminant Analysis (LDA):

• Let data points 𝐱 ∈ ℝ𝑛 belong to two classes 𝒞1 and 𝒞2.

• LDA tries to find an optimal projection axis 𝐰 ∈ ℝ𝑛 that best

separates the two classes.

• A data vector 𝐱 ∈ ℝ𝑛 is projected on projection axis 𝐰 as

follows:

ො𝑥 = 𝐰𝑇𝐱.
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Linear Discriminant 

Analysis

LDA projection axis.
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Linear Discriminant 

Analysis

• Fisher criterion becomes equivalent to maximizing Rayleigh 

quotient:    

𝑟 =
𝐰𝑇𝐒𝑏𝐰

𝐰𝑇𝐒𝑤𝐰
.

• The optimal direction 𝐰 given by generalized eigenanalysis:

𝐒𝑏𝐰 = 𝜆 𝐒𝑤𝐰,

• 𝜆: the largest eigenvalue of matrix 𝐒𝑤
−1𝐒𝑏.
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• Data matrix 𝐗 is an 𝑛 × 𝑁 matrix containing 𝑁 data vectors 

𝐗 = [𝐱1, 𝐱2, … , 𝐱𝑁]. 

• It can be decomposed in a product of 𝑛 × 𝑝 and 𝑝 × 𝑁
matrices 𝐅 and 𝐇, respectively: 

𝐗 = 𝐅𝐇.

• 𝑝 is smaller than 𝑁 and 𝑛.

• All elements of matrices 𝐅, 𝐇 should be positive: 𝑓𝑖𝑗 ≥ 0,

ℎ𝑘𝑙 ≥ 0.
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Non-negative matrix 
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Non-negative matrix factorization
• Columns 𝐟𝑙 , 𝑙 = 1,… , 𝑑 of 𝐅 are basis data vectors.

• If 𝑑 ≪ min(𝑛, 𝑁), we have dimensionality reduction.

• Original data vectors 𝐱𝑖 , 𝑖 = 1,… ,𝑁 can be reconstructed using only
additive combinations of the resulting basis images:

𝐱𝑖 = σ𝑙=1
𝑑 ℎ𝑙𝑖𝐟𝑙 .

• Combination weights: coefficients in 𝐇.

• Consistent with the psychological intuition regarding the objects
representation in the human brain (i.e. combining parts to form the
whole).



Non-negative matrix factorization

𝐱𝑖 =                    ≈ ℎ1𝑖 +ℎ2𝑖 +⋯ℎ𝑙𝑖 + +ℎ𝑝𝑖

Data decomposition in NMF.



Multidimensional Scaling

Multidimensional scaling (MDS) is dimensionality reduction

method, while preserving data dissimilarities (distances).

• Input: a data 𝐱 ∈ ℝ𝑛 dissimilarity matrix.

• Output: typically, it is a two-dimensional scatterplot.

• MDS applications:

• Dimensionality reduction

• Data visualization

• Pattern recognition

• Feature Extraction.
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Multidimensional Scaling

• The dissimilarity type determines the MDS type:

• Classical MDS.

• Metric MDS.

• Non-metric MDS.
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Classical MDS

Classical MDS (cMDS):

• Consider a dissimilarity (distance) 𝑁 × 𝑁 matrix:

𝐃= [𝑑𝑖𝑗], 𝑑𝑖𝑗 = 𝐱𝑖 − 𝐱𝑗 2
, 𝐱1 , … , 𝐱𝑁 ∈ ℝ𝑛.

• cMDS seeks to find a mapping 𝐱 ∈ ℝ𝑛 → ො𝐱 ∈ ℝ𝑑 (𝑑 ≪ 𝑛),

so that:
መ𝑑𝑖𝑗 = ො𝐱𝑖 − ො𝐱𝑗 2

≈ 𝑑𝑖𝑗.

• Optimization problem to minimize function:

min
ො𝐱𝑖,𝑖=1,…𝑁



𝑖<𝑗

(𝑑𝑖𝑗 − 𝑠 መ𝑑𝑖𝑗)
2.
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MDS application in 

cartography

Cartography using MDS and Harvesine distance. 56



MDS Summary

• If Euclidean data distances are used, classical MDS is

convenient.

• For other dissimilarity types, iterative algorithms are more

flexible as they allow optimal data re-scaling.

• They begin by a starting configuration and then modify it

iteratively by reducing a stress function.
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Dimensionality reduction

• Principal Component Analysis

• Data Compression

• Linear Discriminant Analysis

• Multidimensional Scaling
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Eigenanalysis for data compression.

• Data matrix 𝐗 = [𝐱1,𝐱2,…,𝐱𝑁], 𝐱𝑖∈ ℝ𝑛 has dimensions 𝑛 ×
𝑁.

• Each data matrix column is a data vector.

• Matrix 𝐗𝐗𝑇 is square and has dimensions 𝑛 × 𝑛.

• Matrix 𝐗𝑇𝐗 is square and has dimensions 𝑁 × 𝑁.

• 𝐗𝑇𝐗 can be used for data compression!
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Singular Value Decomposition (SVD) for data compression.

• Data matrix 𝐗= [𝐱1,𝐱2,…,𝐱𝑁], 𝐱𝑖∈ ℝ𝑛 has dimensions 𝑛 ×
𝑁.

• Each data matrix column is a data vector.

• Matrix 𝐗 has rank 𝑟 (𝑟 ≤ min 𝑛,𝑁 ).

• As typically, 𝑛 ≪ 𝑁, rank of matrix 𝐗 satisfies 𝑟 ≤ 𝑛.

• Matrix 𝐗𝑇𝐗 is square and has dimensions 𝑁 × 𝑁.

SVD Data Compression



SVD of data matrix 𝐗 ∶
𝐗 = 𝐔𝚺𝐕𝑇 =

𝐮1, 𝐮2 , … , 𝐮𝑟

𝜎1
𝜎2
⋱
𝜎𝑟

𝐯1
𝑇

𝐯2
𝑇

⋮
𝐯𝑟
𝑇

,

• 𝚺 is a 𝑛 × 𝑁 matrix, whose 𝑟 diagonal elements are the

singular values 𝜎1 ≥ 𝜎2 ≥,… , 𝜎𝑟 ≥ 0 of 𝐗.

• Vectors 𝐮𝑖 , 𝑖 = 1, . . , 𝑛, 𝐯𝑗 , 𝑗 = 1, . . , 𝑁 have dimensionality

𝑛, 𝑁 respectively.

SVD Data Compression



SVD of a data matrix.

SVD Data Compression



Vector Quantization

• A data set 𝒟 = {𝐱1, … , 𝐱𝑁} , 𝐱𝑖 ∈ ℝ𝑛 is to be clustered

(partitioned).

• Desired cluster number 𝑚 ≪ 𝑁.

• Distance measure 𝑑(𝐱, 𝐲) between two vectors 𝐱, 𝐲.

• Calculation of cluster centers.

• Sorting algorithm to decide vector proximity.
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Vector Quantization

• Data vectors are partitioned in 𝑚 clusters {𝒞𝑖 , 𝑖 = 1, … ,𝑚}.

• Mapping: 𝐦 = 𝑸(𝐱) .

• ℝ𝒏 is partitioned in 𝑚 Voronoi regions (one per cluster).

• Each Voronoi region (cell) ℛ𝑖 is represented by 𝐦𝑖 ∈ ℝ𝑛,
𝑖 = 1,… ,𝑚:

|𝐱 −𝐦𝑖|< |𝐱 −𝐦𝑗|, 𝑖 ≠ 𝑗.

• Cluster 𝒞𝑖 , 𝑖 = 1, … ,𝑚 vectors reside in ℛ𝑖.

• Voronoi cells may have regular structure.
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Vector Quantization

76Voronoi regions and clusters in ℝ2.



Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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