Dimensionality Reduction summary

G.Giannoulis, G. Voulgaris, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 2.8

Dimensionality reduction

- Introduction
- Feature selection
- Principal Component Analysis
- Linear Discriminant Analysis
- Multidimensional Scaling
- Non-negative matrix factorization

Dimensionality Reduction

- Given a data sample $\mathbf{x} \in \mathbb{R}^n$, compute a new sample representation of reduced dimensionality $\hat{\mathbf{x}} \in \mathbb{R}^d$.
- Typically, lower dimensionality satisfies $d \ll n$.
- The representation \hat{x} is meant:
 - to capture relevant high level information from the initial sample x;
 - provide abstraction from detail;
 - increase robustness to noise;
 - if d = 2, dimensionality reduction to x̂ ∈ ℝ², allows data mapping for visualization;

• Helps us solving the *curse of dimensionality* problem.

Dimensionality Reduction

- Example: *Human posture visualization*.
- Dimensionality reduction from $\mathbf{p} \in \mathbb{R}^{HW}$ to $\mathbf{y} \in \mathbb{R}^2$

Feature selection

- This is the easiest way to do dimensionality reduction.
- Given *N* samples $\mathbf{x}_j = [x_{1j}, x_{2j}, ..., x_{nj}]^T \in \mathbb{R}^n, j = 1, ..., N$, only the *d* most informative features are retained, forming a new sample representation of reduced dimensionality $\hat{\mathbf{x}}_j \in \mathbb{R}^d$.
 - For a two-class problem:
 - Feature x_{ij} , j = 1, ..., N pdf location estimates should be far apart.
 - Feature x_{ij}, j = 1, ..., N pdf dispersion estimates should be small.
 Artificial Intelligence & Information Analysis Lab

 Let v₁ be a *principal component* or principal direction vector satisfying:

$$\mathbf{v}_1^T \mathbf{v}_1 = 1.$$

• A set of N points $\mathbf{x}_i \in \mathbb{R}^n$, i = 1, ..., N, be approximated by their projection on a unit vector \mathbf{v}_1 :

$$\mathbf{a}_i = (\mathbf{x}_i^T \mathbf{v}_1) \ \mathbf{v}_1 = (\mathbf{v}_1^T \mathbf{x}_i) \ \mathbf{v}_1.$$

• The approximation error vector becomes: $\mathbf{b}_i = \mathbf{x}_i - \mathbf{a}_i = \mathbf{x}_i - (\mathbf{x}_i^T \mathbf{v}_1) \mathbf{v}_1.$

Principal Component Analysis Principal Component Analysis (PCA):

If \mathbf{v}_1 , \mathbf{v}_2 ,..., \mathbf{v}_d are unit vectors $\mathbf{v}_i^T \mathbf{v}_i = 1$ that are perpendicular to each other: $\mathbf{v}_i^T \mathbf{v}_j = 0$, $(i \neq j)$ form a basis of the a *d*-dimensional space \mathbb{R}^d , and if $\hat{\mathbf{x}}$ is the representation of the *n*-dimensional vector \mathbf{x} :

$$\hat{\mathbf{x}} = \sum_{j=1}^{d} (\mathbf{v}_j^T \mathbf{x}) \mathbf{v}_j,$$

• $\mathbf{v}_j, j = 1, ..., d$: basis vectors forming a new coordinate system in the *d*-dimensional space \mathbb{R}^d .

Eigenfaces:

- Reduce facial image (vector x) dimensionality.
- \mathbf{v}_i , i = 1, ..., d: basis image vectors (eigenfaces).
- A facial image is express as a weighted sum of eigenfaces:

 $\hat{\mathbf{x}} = \sum_{j=1}^{d} (\mathbf{v}_j^T \mathbf{x}) \mathbf{v}_j.$

a) Facial image; b) Example eigenfaces.

- PCA can be performed on the autocorrelation matrix R_x = E{XX^T} of random vectors X belonging to data set D, instead of working on data samples that form matrix X resulting in matrix XX^T.
- PCA can be applied after centering the data at their arithmetic mean vector:

$$\mathbf{x}_i' = \mathbf{x}_i - \left(\frac{\sum_{i=1}^N \mathbf{x}_i}{N}\right)$$

 \mathbf{v}_2

 x_2

Artificial Intelligence &

Information Analysis Lab

Geometrical axes translation/rotation.

 \mathbf{x}_2'

 \mathbf{V}_1

 \mathbf{x}_1'

 x_1

(VML

• Similarly, PCA can be performed on $\psi o \omega \alpha \rho \alpha v \psi \epsilon$ matrix C_X of random vectors X belonging to data set \mathcal{D} :

$$\mathbf{C}_{\mathbf{X}} = E\{(\mathbf{X} - \mathbf{m}_{\mathbf{X}})(\mathbf{X} - \mathbf{m}_{\mathbf{X}})^T\}.$$

As:

 $\mathbf{R}_{\mathbf{X}} = \mathbf{C}_{\mathbf{X}} + \mathbf{m}_{\mathbf{X}} \mathbf{m}_{\mathbf{X}}^{T}$, a large expected vector $\mathbf{m}_{\mathbf{X}}$ of random vector \mathbf{X} may dominate $\mathbf{R}_{\mathbf{X}}$, hence greatly influencing its eigenanalysis.

Artificial Intelligence & Information Analysis Lab

m

 \mathbf{e}_2

 x_2

Influence of expected (mean) vectors on PCA.

 \mathbf{v}_1

 \mathbf{e}_1

 x_1

VML

Artificial Intelligence & Information Analysis Lab

- PCA does not employ class information.
- Efficient representation does not mean efficient classification between two classes!
- Eigenanalysis does not necessarily result in discriminant data representation.

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA):

- Let data points $\mathbf{x} \in \mathbb{R}^n$ belong to two classes \mathcal{C}_1 and \mathcal{C}_2 .
- LDA tries to find an optimal projection axis $\mathbf{w} \in \mathbb{R}^n$ that best separates the two classes.
 - A data vector $\mathbf{x} \in \mathbb{R}^n$ is projected on projection axis \mathbf{w} as follows:

$$\hat{x} = \mathbf{w}^T \mathbf{x}$$

Linear Discriminant Analysis

 \mathcal{C}_1

 \mathbf{m}_1

 \mathbf{X}_0

 x_2

w

LDA projection axis.

 \mathcal{C}_2

 \mathbf{m}_2

Linear Discriminant Analysis

 Fisher criterion becomes equivalent to maximizing *Rayleigh quotient*:

$$r = \frac{\mathbf{w}^T \mathbf{S}_b \mathbf{w}}{\mathbf{w}^T \mathbf{S}_w \mathbf{w}}.$$

The optimal direction w given by generalized eigenanalysis:

 $\mathbf{S}_b \mathbf{w} = \lambda \ \mathbf{S}_w \mathbf{w},$

• λ : the largest eigenvalue of matrix $\mathbf{S}_w^{-1}\mathbf{S}_b$.

Non-negative matrix factorization

- Data matrix **X** is an $n \times N$ matrix containing N data vectors **X** = [$\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N$].
- It can be decomposed in a product of n × p and p × N matrices F and H, respectively:

$$\mathbf{X} = \mathbf{F}\mathbf{H}$$
.

- p is smaller than N and n.
- All elements of matrices **F**, **H** should be positive: $f_{ij} \ge 0$,

Non-negative matrix factorization VML

- Columns \mathbf{f}_l , l = 1, ..., d of \mathbf{F} are **basis data vectors**.
- If $d \ll \min(n, N)$, we have dimensionality reduction.
- Original data vectors \mathbf{x}_i , i = 1, ..., N can be reconstructed using only additive combinations of the resulting basis images:

$$\mathbf{x}_i = \sum_{l=1}^d h_{li} \mathbf{f}_l.$$

- Combination weights: coefficients in H.
- Consistent with the psychological intuition regarding the objects representation in the human brain (i.e. combining parts to form the whole).

Non-negative matrix factorization VML

Data decomposition in NMF.

VML

Multidimensional Scaling

Multidimensional scaling (*MDS*) is dimensionality reduction method, while preserving data dissimilarities (distances).

- Input: a data $\mathbf{x} \in \mathbb{R}^n$ dissimilarity matrix.
- Output: typically, it is a two-dimensional scatterplot.
- MDS applications:
 - Dimensionality reduction
 - Data visualization
 - Pattern recognition
 - Feature Extraction.

Artificial Intelligence & Information Analysis Lab

Multidimensional Scaling

- The dissimilarity type determines the MDS type:
 - Classical MDS.
 - Metric MDS.
 - Non-metric MDS.

Classical MDS

Classical MDS (cMDS):

• Consider a dissimilarity (distance) $N \times N$ matrix:

$$\mathbf{D} = [d_{ij}], \quad d_{ij} = \left\|\mathbf{x}_i - \mathbf{x}_j\right\|_2, \quad \mathbf{x}_1, \dots, \mathbf{x}_N \in \mathbb{R}^n.$$

• cMDS seeks to find a mapping $\mathbf{x} \in \mathbb{R}^n \to \hat{\mathbf{x}} \in \mathbb{R}^d$ $(d \ll n)$, so that:

$$\hat{d}_{ij} = \left\| \hat{\mathbf{x}}_i - \hat{\mathbf{x}}_j \right\|_2 \approx d_{ij}.$$

 $\min_{\hat{\mathbf{x}}_{i}, i=1,...N} \sum_{i < i} (d_{ij} - s\hat{d}_{ij})^{2}.$

Optimization problem to minimize function:

MDS application in cartography

Artificial Intelligence & Information Analysis Lab

Cartography using MDS and Harvesine distance.

MDS Summary

- If Euclidean data distances are used, classical MDS is convenient.
- For other dissimilarity types, iterative algorithms are more flexible as they allow optimal data re-scaling.
- They begin by a starting configuration and then modify it iteratively by reducing a stress function.

Dimensionality reduction

- Principal Component Analysis
- Data Compression
- Linear Discriminant Analysis
- Multidimensional Scaling

Data compression

Eigenanalysis for data compression.

- Data matrix $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N]$, $\mathbf{x}_i \in \mathbb{R}^n$ has dimensions $n \times N$.
- Each data matrix column is a data vector.
- Matrix **XX**^T is square and has dimensions $n \times n$.
- Matrix $\mathbf{X}^T \mathbf{X}$ is square and has dimensions $N \times N$.
 - **X**^T**X** can be used for data compression!

SVD Data Compression

Singular Value Decomposition (SVD) for data compression.

- Data matrix $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N]$, $\mathbf{x}_i \in \mathbb{R}^n$ has dimensions $n \times N$.
- Each data matrix column is a data vector.
- Matrix **X** has rank $r (r \le \min\{n, N\})$.
- As typically, $n \ll N$, rank of matrix **X** satisfies $r \leq n$.
- Matrix $\mathbf{X}^T \mathbf{X}$ is square and has dimensions $N \times N$.

SVD Data Compression

SVD of data matrix **X** :

$$\mathbf{X} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{T} = \mathbf{U}\mathbf{U}\mathbf{U}^{T} = \begin{bmatrix} \sigma_{1} & & \\ \sigma_{2} & & \\ & \ddots & \\ & & \ddots & \\ & & & \sigma_{r} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1}^{T} \\ \mathbf{v}_{2}^{T} \\ \vdots \\ \mathbf{v}_{r}^{T} \end{bmatrix},$$

- Σ is a $n \times N$ matrix, whose r diagonal elements are the singular values $\sigma_1 \ge \sigma_2 \ge \dots, \sigma_r \ge 0$ of **X**.
- Vectors u_i, i = 1,...,n, v_j, j = 1,...,N have dimensionality n, N respectively.

Artificial Intelligence & Information Analysis Lab

SVD Data Compression

SVD of a data matrix.

Vector Quantization

- A data set $\mathcal{D} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$, $\mathbf{x}_i \in \mathbb{R}^n$ is to be clustered (partitioned).
- Desired cluster number $m \ll N$.
- Distance measure $d(\mathbf{x}, \mathbf{y})$ between two vectors \mathbf{x}, \mathbf{y} .
- Calculation of cluster centers.
- Sorting algorithm to decide vector proximity.

Vector Quantization

- Data vectors are partitioned in *m* clusters $\{C_i, i = 1, ..., m\}$.
- Mapping: $\mathbf{m} = \mathbf{Q}(\mathbf{x})$.
- \mathbb{R}^n is partitioned in *m* Voronoi regions (one per cluster).
- Each Voronoi region (cell) \mathcal{R}_i is represented by $\mathbf{m}_i \in \mathbb{R}^n$, i = 1, ..., m:

 $|\mathbf{x} - \mathbf{m}_i| < |\mathbf{x} - \mathbf{m}_j|, \quad i \neq j.$

- Cluster C_i , i = 1, ..., m vectors reside in \mathcal{R}_i .
- Voronoi cells may have regular structure.

Vector Quantization

Voronoi regions and clusters in \mathbb{R}^2 .

Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas pitas@csd.auth.gr

