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Dimensionality reduction @ML

* |ntroduction

* Feature selection

* Principal Component Analysis
 Linear Discriminant Analysis
Multidimensional Scaling
Non-negative matrix factorization
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Dimen

sionality Reduction C\ZML

« Given a data sample xe€ R™, compute a new sample
representation of reduced dimensionality 8 € R4,
« Typically, lower dimensionality satisfies d « n.

« Therep
10 ca
samp

resentation X IS meant:

oture relevant high level information from the initial
e X;

« provide abstraction from detalil;
* increase robustness to noise;
- if d =2, dimensionality reduction to £ € R?, allows data
mapping for visualization;
Q”O;,ﬁﬁdl;lh Ips.us solving the curse of dimensionality problem.
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Dimensionality Reduction VML

 Example: Human posture visualization.
* Dimensionality reduction from p € Rf" toy € R?

YT
H Y
== H == HH"0 o oo | %’
Y2
Binary human Posture image Posture vector Posture visualization
i 2 - 2
body image. of fixed size. p € RV, y € R
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Feature selection C\ZML

* This Is the easiest way to do dimensionality reduction.

: T
* Given N samples x; = [xlj,xzj, ...,xnj] eR"j=1,..,N, only
the d most informative features are retained, forming a new
sample representation of reduced dimensionality X; € RY.

* For atwo-class problem:
 Feature x;;,j =1, ..., N pdf location estimates should be far

apart.
* Feature x;;,j =1,...,N pdf dispersion estimates should be

small.

| | Artificial Intelligence &
Information Analysis Lab



Feature selection
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Feature Selection

Feature selection in the 2D space.
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Principal Component C\ZML
Analysis

 Let v; be a principal component or principal direction vector
satisfying:
viv, = 1.
« Asetof N points x; € R",i =1, ..., N, be approximated by their
projection on a unit vector v;:

a; — (X?V1) L (V1Txi) Vj.

« The approximation error vector becomes:
= — T
bi = X; —d; = X; — (Xi V1)V1-
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Principal Component C\ZML
Analysis
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Principal Component C\ZML

Analysis
Principal Component Analysis (PCA):
If v;,v,,., vy are unit vectors v/v;=1 that are

perpendicular to each other: v'v; =0, (i # j) form a basis

of the a d -dimensional space R¢, and if £ is the
representation of the n -dimensional vector x:

d
S — T
X = Z(Vj X)V;,
j=1
* v;,j =1,..,d: basis vectors forming a new coordinate
..System.in the d-dimensional space R?.
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Principal Component C\ZML
Analysis

Eigenfaces:

* Reduce facial image (vector x) dimensionality.

* v;,,i =1,...,d: basis image vectors (eigenfaces).

« A facial image Is express as a weighted sum of eigenfaces:

o _ vd T
X = )j=1(V;X)V;.

OHO Aricial nfeligence & | a) Facial image; b) Example eigenfaces. ,




Principal Component C\ZML
Analysis

« PCA can be performed on the autocorrelation matrix
R, = E{XX"} of random vectors X belonging to data
set D, Instead of working on data samples that form
matrix X resulting in matrix XX?’.

« PCA can be applied after centering the data at their
arithmetic mean vector:

N
X,_X'— i=1Xi
l l N .
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Principal Component
Analysis
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Geometrlcal axes translation/rotation.
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Principal Component C\ZML
Analysis

« Similarly, PCA can be performed on powaplavye matrix
C, of random vectors X belonging to data set D:

Cx = E{(X—my)(X—my)"}.

* As:
R, = Cy +my my,
a large expected vector my of random vector X may
dominateRy, hence greatly influencing its eigenanalysis.
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Principal Component
Analysis
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Influence of expected (mean) vectors on PCA.
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Principal Component (VML
Analysis
« PCA does not employ class information.

« Efficient representation does not mean efficient
classification between two classes!

« Eigenanalysis does not necessarily result in discriminant
data representation.
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Principal Component
Analysis
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Discriminant power of principal components.
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Linear Discriminant C\ZML
Analysis

Linear Discriminant Analysis (LDA):
+ Let data points x € R™ belong to two classes C; and C,.

« LDA tries to find an optimal projection axis w € R" that best
separates the two classes.

« A data vector x € R™Is projected on projection axis w as

follows:

x=wl
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Linear Discriminant
Analysis
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Linear Discriminant C\ZML

Analysis
 Fisher criterion becomes equivalent to maximizing Rayleigh
guotient:
- wiS,w
" wlisS, w

* The optimal direction w given by generalized eigenanalysis:

S,w=A18,w,
- A: the largest eigenvalue of matrix S;;'S,.

Attificial Intelligen
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Non-negative matrix C\ZML
factorization

Data matrix X is an n X N matrix containing N data vectors
X = [Xq1,X5, ..., Xy
It can be decomposed in a productofn xpandp X N

matrices F and H, respectively:
X = FH.

p 1S smaller than N and n.

All ‘elements of matrices F,H should be positive: f;; =0,

|| Artificial Intelligenc .
Information Analysis Lb



Non-negative matrix factorizatior(VML

« Columnsf;,l=1,..,d of F are basis data vectors.
* Ifd K min(n, N), we have dimensionality reduction.

« Original data vectors x;,i = 1, ..., N can be reconstructed using only
additive combinations of the resulting basis images:

X; = Yo hyf).

«  Combination weights: coefficients in H.

« Consistent with the psychological intuition regarding the objects
representation in the human brain (i.e. combining parts to form the
whole).

| | Artificial Intelligence &
Information Analysis Lab



Non-negative matrix factorizatior(VML

Data decomposition in NMF.



Multidimensional Scaling @ML

Multidimensional scaling (MDS) is dimensionality reduction
method, while preserving data dissimilarities (distances).

* |nput: a data x € R™ dissimilarity matrix.
« Qutput: typically, it is a two-dimensional scatterplot.
« MDS applications:

« Dimensionality reduction

« Data visualization

« Pattern recognition
« Feature Extraction.
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Multidimensional Scaling @ML

* The dissimilarity type determines the MDS type:

 Classical MDS.
 Metric MDS.
« Non-metric MDS.

Attificial Intelligen
O”Olfmi AIy Lb 47



Classical MDS @ML

Classical MDS (cMDS):
« Consider a dissimilarity (distance) N X N matrix:

D= [d;;], = Hx — H X1, ..., Xy € R™,

» cMDS seeks to find a mapping x € R* - R € R? (d K n),
so that:
dij = ||% — %], = di.
« Optimization problem to minimize function:

. .mln Z(du Sdl])z
O”O f\f”mal’rl fellig;y Lab X l<] 48



MDS application In C\ZML
cartography

O”O atiicial neligence &+ Cartography using MDS and Harvesine distance. .
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MDS Summary @ML

* |If Euclidean data distances are used, classical MDS is
convenient.

* For other dissimilarity types, iterative algorithms are more
flexible as they allow optimal data re-scaling.

 They begin by a starting configuration and then modify it
iteratively by reducing a stress function.
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Dimensionality reduction @ML

* Principal Component Analysis
« Data Compression

 Linear Discriminant Analysis
Multidimensional Scaling
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Data compression @ML

Eigenanalysis for data compression.

« Data matrix X = [x{,X,,...,Xy], X; € R" has dimensions n X
N.

« Each data matrix column is a data vector.

« Matrix XX? is square and has dimensions n X n.

e Matrix X”X is square and has dimensions N x N.
« XX can be used for data compression!
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SVD Data Compression @ML

Singular Value Decomposition (SVD) for data compression.

« Data matrix X= [x4,X,,...,Xy], X; € R™ has dimensions n X
N.

 Each data matrix column is a data vector.
« Matrix X has rank r (r < min{n, N}).
« As typically, n «< N, rank of matrix X satisfies r < n.

« Matrix X'X is square and has dimensions N x N.
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SVD Data Compression @ML

SVD of data matrix X :

X =UzV! =
0y 1[vi
[ul' uz' ---'ur] . .2 )
Or _VZ_

« XY IS a n x N matrix, whose r diagonal elements are the
singular values oy = 0, =, ...,0, = 0 of X.

* Vectors u;,i=1,..,n, v; ,j=1,..,N have dimensionality
n, N respectively.

| | Artificial Intelligence &
Information Analysis Lab



SVD Data Compression
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SVD of a data matrix.
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Vector Quantization @ML

A data set D ={xq,..,Xy}, X; ER" Is to be clustered
(partitioned).

Desired cluster number m «< N.

Distance measure d(X,y) between two vectors x,y.
Calculation of cluster centers.

Sorting algorithm to decide vector proximity.
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Vector Quantization @ML

Data vectors are partitioned in m clusters {C;,i = 1, ..., m}.
Mapping: m = Q(X) .
 R" Is partitioned in m VVoronol regions (one per cluster).

Each Voronoi region (cell) R, is represented by m; € R",
(=1, .. m:

X —my|< [x —m;|, i#].

Cluster C;,i = 1, ..., m vectors reside in R,.
Voronoi cells may have regular structure.
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Vector Quantization VL
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Q”D Artificial Intelligence & Voronoi regions and clusters in R?. e
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(VML

Q&A

Thank you very much for your attention!

p

Contacet:-Prof, I. Pitas
pitas@csd.auth.gr o
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