Dimensionality Reduction summary

G.Giannoulis, G. Voulgaris, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr

Version 2.8

Dimensionality reduction

- Introduction
- Feature selection
- Principal Component Analysis
- Linear Discriminant Analysis
- Multidimensional Scaling
- Non-negative matrix factorization

Dimensionality Reduction

- Given a data sample $\mathbf{x} \in \mathbb{R}^{n}$, compute a new sample representation of reduced dimensionality $\hat{\mathbf{x}} \in \mathbb{R}^{d}$.
- Typically, lower dimensionality satisfies $d \ll n$.
- The representation $\hat{\mathbf{x}}$ is meant:
- to capture relevant high level information from the initial sample x;
- provide abstraction from detail;
- increase robustness to noise;
- if $d=2$, dimensionality reduction to $\hat{\mathbf{x}} \in \mathbb{R}^{2}$, allows data mapping for visualization;

Dimensionality Reduction

- Example: Human posture visualization.
- Dimensionality reduction from $\mathbf{p} \in \mathbb{R}^{H W}$ to $\mathbf{y} \in \mathbb{R}^{2}$

Binary human body image.

Posture image Posture vector $\mathbf{p} \in \mathbb{R}^{H W}$.

Posture visualization $\mathbf{y} \in \mathbb{R}^{2}$.

Feature selection

- This is the easiest way to do dimensionality reduction.
- Given N samples $\mathbf{x}_{j}=\left[x_{1 j}, x_{2 j}, \ldots, x_{n j}\right]^{T} \in \mathbb{R}^{n}, j=1, \ldots, N$, only the d most informative features are retained, forming a new sample representation of reduced dimensionality $\hat{\mathbf{x}}_{j} \in \mathbb{R}^{d}$.
- For a two-class problem:
- Feature $x_{i j}, j=1, \ldots, N$ pdf location estimates should be far apart.
- Feature $x_{i j}, j=1, \ldots, N$ pdf dispersion estimates should be small.

Feature selection

Feature selection in the 2D space.

Principal Component Analysis

- Let \mathbf{v}_{1} be a principal component or principal direction vector satisfying:

$$
\mathbf{v}_{1}^{T} \mathbf{v}_{1}=1
$$

- A set of N points $\mathbf{x}_{i} \in \mathbb{R}^{n}, i=1, \ldots, N$, be approximated by their projection on a unit vector \mathbf{v}_{1} :

$$
\mathbf{a}_{i}=\left(\mathbf{x}_{i}^{T} \mathbf{v}_{1}\right) \mathbf{v}_{1}=\left(\mathbf{v}_{1}^{T} \mathbf{x}_{i}\right) \mathbf{v}_{1} .
$$

- The approximation error vector becomes:

$$
\mathbf{b}_{i}=\mathbf{x}_{i}-\mathbf{a}_{i}=\mathbf{x}_{i}-\left(\mathbf{x}_{i}^{T} \mathbf{v}_{1}\right) \mathbf{v}_{1}
$$

Principal Component Analysis

Principal Component Analysis

Principal Component Analysis (PCA):

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d}$ are unit vectors $\mathbf{v}_{i}^{T} \mathbf{v}_{i}=1$ that are perpendicular to each other: $\mathbf{v}_{i}^{T} \mathbf{v}_{j}=0,(i \neq j)$ form a basis of the a d-dimensional space \mathbb{R}^{d}, and if $\hat{\mathbf{x}}$ is the representation of the n-dimensional vector \mathbf{x} :

$$
\widehat{\mathbf{x}}=\sum_{j=1}^{d}\left(\mathbf{v}_{j}^{T} \mathbf{x}\right) \mathbf{v}_{j}
$$

- $\mathbf{v}_{j}, j=1, \ldots, d$: basis vectors forming a new coordinate

Principal Component Analysis

Eigenfaces:

- Reduce facial image (vector \mathbf{x}) dimensionality.
- $\mathbf{v}_{i}, i=1, \ldots, d$: basis image vectors (eigenfaces).
- A facial image is express as a weighted sum of eigenfaces:

$$
\widehat{\mathbf{x}}=\sum_{j=1}^{d}\left(\mathbf{v}_{j}^{T} \mathbf{x}\right) \mathbf{v}_{j} .
$$

a) Facial image; b) Example eigenfaces.

Principal Component Analysis

- PCA can be performed on the autocorrelation matrix $\mathbf{R}_{\mathbf{X}}=E\left\{\mathbf{X X}^{T}\right\}$ of random vectors \mathbf{X} belonging to data set \mathcal{D}, instead of working on data samples that form matrix \mathbf{X} resulting in matrix $\mathbf{X X}^{T}$.
- PCA can be applied after centering the data at their arithmetic mean vector:

$$
\mathbf{x}_{i}^{\prime}=\mathbf{x}_{i}-\left(\frac{\sum_{i=1}^{N} \mathbf{x}_{i}}{N}\right)
$$

Principal Component Analysis

Geometrical axes translation/rotation.

Principal Component Analysis

- Similarly, PCA can be performed on $\psi о \omega \alpha \rho ı a v \psi \varepsilon$ matrix $\mathbf{C}_{\mathbf{x}}$ of random vectors \mathbf{X} belonging to data set \mathcal{D} :

$$
\mathbf{C}_{\mathbf{X}}=E\left\{\left(\mathbf{X}-\mathbf{m}_{\mathbf{X}}\right)\left(\mathbf{X}-\mathbf{m}_{\mathbf{X}}\right)^{T}\right\} .
$$

- As:

$$
\mathbf{R}_{\mathbf{X}}=\mathbf{C}_{\mathbf{X}}+\mathbf{m}_{\mathbf{X}} \mathbf{m}_{\mathbf{X}}^{T},
$$

a large expected vector $\mathbf{m}_{\mathbf{X}}$ of random vector \mathbf{X} may dominate \mathbf{R}_{x}, hence greatly influencing its eigenanalysis.

Principal Component Analysis

Influence of expected (mean) vectors on PCA.

Principal Component Analysis

- PCA does not employ class information.
- Efficient representation does not mean efficient classification between two classes!
- Eigenanalysis does not necessarily result in discriminant data representation.

Principal Component Analysis

Discriminant power of principal components.

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA):

- Let data points $\mathbf{x} \in \mathbb{R}^{n}$ belong to two classes \mathcal{C}_{1} and \mathcal{C}_{2}.
- LDA tries to find an optimal projection axis $\mathbf{w} \in \mathbb{R}^{n}$ that best separates the two classes.
- A data vector $\mathbf{x} \in \mathbb{R}^{n}$ is projected on projection axis \mathbf{w} as follows:

$$
\hat{x}=\mathbf{w}^{T} \mathbf{x} .
$$

Linear Discriminant Analysis

LDA projection axis.

Linear Discriminant Analysis

- Fisher criterion becomes equivalent to maximizing Rayleigh quotient:

$$
r=\frac{\mathbf{w}^{T} \mathbf{S}_{b} \mathbf{w}}{\mathbf{w}^{T} \mathbf{S}_{w} \mathbf{w}}
$$

- The optimal direction \mathbf{w} given by generalized eigenanalysis:

$$
\mathbf{S}_{b} \mathbf{w}=\lambda \mathbf{S}_{w} \mathbf{w},
$$

- λ : the largest eigenvalue of matrix $\mathbf{S}_{w}^{-1} \mathbf{S}_{b}$.

Non-negative matrix factorization

- Data matrix \mathbf{X} is an $n \times N$ matrix containing N data vectors $\mathbf{X}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right]$.
- It can be decomposed in a product of $n \times p$ and $p \times N$ matrices \mathbf{F} and \mathbf{H}, respectively:

$$
\mathbf{X}=\mathbf{F H} .
$$

- p is smaller than N and n.
- All elements of matrices \mathbf{F}, \mathbf{H} should be positive: $f_{i j} \geq 0$, $h_{k l} \geq 0$.

Non-negative matrix factorizatio VML

- Columns $\mathbf{f}_{l}, l=1, \ldots, d$ of \mathbf{F} are basis data vectors.
- If $d \ll \min (n, N)$, we have dimensionality reduction.
- Original data vectors $\mathbf{x}_{i}, i=1, \ldots, N$ can be reconstructed using only additive combinations of the resulting basis images:

$$
\mathbf{x}_{i}=\sum_{l=1}^{d} h_{l i} \mathbf{f}_{l} .
$$

- Combination weights: coefficients in \mathbf{H}.
- Consistent with the psychological intuition regarding the objects representation in the human brain (i.e. combining parts to form the whole).

Non-negative matrix factorizatio VML

Data decomposition in NMF.

Multidimensional Scaling

Multidimensional scaling (MDS) is dimensionality reduction method, while preserving data dissimilarities (distances).

- Input: a data $\mathbf{x} \in \mathbb{R}^{n}$ dissimilarity matrix.
- Output: typically, it is a two-dimensional scatterplot.
- MDS applications:
- Dimensionality reduction
- Data visualization
- Pattern recognition
- Feature Extraction.

Multidimensional Scaling

- The dissimilarity type determines the MDS type:
- Classical MDS.
- Metric MDS.
- Non-metric MDS.

Classical MDS

Classical MDS (cMDS):

- Consider a dissimilarity (distance) $N \times N$ matrix:

$$
\mathbf{D}=\left[d_{i j}\right], \quad d_{i j}=\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}, \quad \mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in \mathbb{R}^{n}
$$

- cMDS seeks to find a mapping $\mathbf{x} \in \mathbb{R}^{n} \rightarrow \hat{\mathbf{x}} \in \mathbb{R}^{d}(d \ll n)$, so that:

$$
\hat{d}_{i j}=\left\|\hat{\mathbf{x}}_{i}-\hat{\mathbf{x}}_{j}\right\|_{2} \approx d_{i j} .
$$

- Optimization problem to minimize function:

$$
\min _{\hat{\mathbf{x}}_{i}, i=1, \ldots N} \sum_{i<j}\left(d_{i j}-s \hat{d}_{i j}\right)^{2}
$$

MDS application in cartography

MDS Summary

- If Euclidean data distances are used, classical MDS is convenient.
- For other dissimilarity types, iterative algorithms are more flexible as they allow optimal data re-scaling.
- They begin by a starting configuration and then modify it iteratively by reducing a stress function.

Dimensionality reduction

- Principal Component Analysis
- Data Compression
- Linear Discriminant Analysis
- Multidimensional Scaling

Data compression

Eigenanalysis for data compression.

- Data matrix $\mathbf{X}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right], \mathbf{x}_{i} \in \mathbb{R}^{n}$ has dimensions $n \times$ N.
- Each data matrix column is a data vector.
- Matrix $\mathbf{X X}^{T}$ is square and has dimensions $n \times n$.
- Matrix $\mathbf{X}^{T} \mathbf{X}$ is square and has dimensions $N \times N$.
- $\mathbf{X}^{T} \mathbf{X}$ can be used for data compression!

SVD Data Compression

Singular Value Decomposition (SVD) for data compression.

- Data matrix $\mathbf{X}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right], \mathbf{x}_{i} \in \mathbb{R}^{n}$ has dimensions $n \times$ N.
- Each data matrix column is a data vector.
- Matrix \mathbf{X} has rank $r(r \leq \min \{n, N\})$.
- As typically, $n \ll N$, rank of matrix \mathbf{X} satisfies $r \leq n$.
- Matrix $\mathbf{X}^{T} \mathbf{X}$ is square and has dimensions $N \times N$.

SVD Data Compression

SVD of data matrix \mathbf{X} :

$$
\begin{gathered}
\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}= \\
{\left[\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{r}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \sigma_{2} & \\
& & \ddots \\
& & \\
& & \\
& & \\
\hline
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\mathbf{v}_{2}^{T} \\
\vdots \\
\mathbf{v}_{r}^{T}
\end{array}\right],}
\end{gathered}
$$

- $\boldsymbol{\Sigma}$ is a $n \times N$ matrix, whose r diagonal elements are the singular values $\sigma_{1} \geq \sigma_{2} \geq, \ldots, \sigma_{r} \geq 0$ of \mathbf{X}.
- Vectors $\mathbf{u}_{i}, i=1, \ldots, n, \mathbf{v}_{j}, j=1, \ldots, N$ have dimensionality n, N respectively.

SVD Data Compression

SVD of a data matrix.

Vector Quantization

- A data set $\mathcal{D}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}, \mathbf{x}_{i} \in \mathbb{R}^{n}$ is to be clustered (partitioned).
- Desired cluster number $m \ll N$.
- Distance measure $d(\mathbf{x}, \mathbf{y})$ between two vectors \mathbf{x}, \mathbf{y}.
- Calculation of cluster centers.
- Sorting algorithm to decide vector proximity.

Vector Quantization

- Data vectors are partitioned in m clusters $\left\{\mathcal{C}_{i}, i=1, \ldots, m\right\}$.
- Mapping: $\mathbf{m}=\boldsymbol{Q}(\mathbf{x})$.
- $\mathbb{R}^{\boldsymbol{n}}$ is partitioned in m Voronoi regions (one per cluster).
- Each Voronoi region (cell) \mathcal{R}_{i} is represented by $\mathbf{m}_{i} \in \mathbb{R}^{n}$, $i=1, \ldots, m$:

$$
\left|\mathbf{x}-\mathbf{m}_{i}\right|<\left|\mathbf{x}-\mathbf{m}_{j}\right|, \quad i \neq j .
$$

- Cluster $\mathcal{C}_{i}, i=1, \ldots, m$ vectors reside in \mathcal{R}_{i}.
- Voronoi cells may have regular structure.

Vector Quantization

Voronoi regions and clusters in \mathbb{R}^{2}.

Q \& A

Thank you very much for your attention!

Contact: Prof. I. Pitas pitas@csd.auth.gr

