

Computational Cinematography summary

I. Karakostas, Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@aiia.csd.auth.gr www.aiia.csd.auth.gr Version 2.5.1

Shot types in cinematography

- Framing Shot Types
- Shot type constraints

Framing Shot Types

- Framing Shot Types are more or less those of traditional cinematography.
- Most are defined based on the percentage of the video frame width /

he	FRAMING SHOT TYPE	Percentage of frame width/height covered by target		
	Extreme Long Shot (ELS)	<5%		
	Very Long Shot (VLS)	5-20%		
	Long Shot (LS)	20-40%		
	Medium Shot (MS)	40-60%		
	Medium Close Up (MCU)	60-75%		
	Close Up (CU)	>75%		

Artificial Intelligence & Information Analysis Lab

Framing Shot Types

- A couple of Framing Shot Types deal with two or more subjects / targets:
 - 2 Shot / 3 Shot: 2/3 subjects appear on frame, equally visible (typically LS or MS).
 - Over the Shoulder (OTS): Adapted from traditional cinematography OTS. Main target fully visible, secondary target visible at the video frame edge.

Framing Shot Types

Artificial Intelligence & Information Analysis Lab

• Example UAV shot types when shooting boat targets from the side.

Shot Type Characterization

- Problem statement: Classify a video shot into one of the predefined classes :
 - eXtreme Close Up shot (XCU),⁻
 - Medium Shot (MS),
 - Long Shot (LS),
 - eXtreme Long Shot (XLS), etc. —
 - Over The Shoulder (OTS)

Close up shot

Basic shot types

Medium Shot

Basic Shot Type Characterization VML

Used Feature map

Artificial Intelligence & Information Analysis Lab

Over-the-shoulder shots

• We fed the *feature maps* into an SVM classifier with Radial Basis Function (RBF) kernel.

(VML

Challenging cases

RGB image

Feature map

Shot types in cinematography

- Framing Shot Types
- Shot type constraints

- Using the mathematical modeling of UAV shot type taxonomy, analytically constraints can be derived on maximum focal length *f* in order to avoid 2D visual tracking failure for various target tracking shot types.
- In general, a visual tracker searches for the target in the next frame within a specific region, the target ROI.

 Since the size of the ROI varies per tracking algorithm, we assume a maximum search radius R_{max} within which the target image must lie in order to avoid 2D visual tracking failure.

• Assuming that the target is supposed to be positioned in the principal point and can deviate in the next frame from its expected position by a deviation vector $q_{t'} = [q_{t1}, q_{t2}, q_{t3}]^T$, the maximum focal length is given by:

$$f_{max} = \frac{R_{\max} d_{t'} s_x s_y |E_1 + F || \mathbf{x}_{t'} ||^2|}{\sqrt{(s_x q_{t3} d_t'^2 - s_x x_{t'3} E_2)^2 + s_y^2 E_3^2 || \mathbf{x}_{t'} ||^2}},$$

where $d_{t'} = \sqrt{x_{t1}^2 + x_{t2}^2}$, $E_1 = -q_{t1}x_{t'1} - q_{t2}x_{t'2} - q_{t3}x_{t'3}$, $E_2 = q_{t1}x_{t'1} + q_{t2}x_{t'2}$ and $E_3 = q_{t1}x_{t'1} + q_{t2}x_{t'2}$

Artificial Intelligence & Information Analysis Lab

- Decision on whether a desired shot type is feasible, given a specific camera motion type and the target's physical dimensions.
- When the appropriate focal length $f_s < \min(f_{max})$ the shot type is feasible.

• By modelling the target as a sphere with its center positioned at $[0, 0, 0]^T$, then the desired focal length f_s is given by:

$$f_s = \frac{z_d}{R_t} \sqrt{\frac{c_s a_s}{\pi}}$$

where z_d is the distance between the target and the UAV/camera, R_t is the radius of target sphere, c_s is the desired video frame coverage and a_s is the area of the projected target circle on video frame.

Determining the desired focal length to achieve specific shot types (constant distance between UAV and target)

Motion type	$\min f_{max}$	f_s when $c_s = 50 \%$ (medium shot)	f_s when $c_s = 80 \%$ (closeup)
LTS	77.8 mm	103.4 mm, not feasible	150.7 mm, not feasible
CHASE	162.9 mm	103.4 mm, feasible	150.7 mm, feasible
ORBIT	128.8 mm	103.4 mm, feasible	150.7 mm, not feasible

A shot type is feasible if the $f_{max} > f_s$

Thank you very much for your attention!

More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr

