
P. Bassia, Prof. Ioannis Pitas

Aristotle University of Thessaloniki

pitas@csd.auth.gr

www.aiia.csd.auth.gr

Version 2.4.1

CUDA: Compute Unified Device

Architecture

summary

1

What is CUDA?

CUDA is a parallel computing platform and programming model

invented by NVIDIA. It enables dramatic increases in computing

performance by exploiting the power of the Graphics Processing

Unit (GPU).

2

CPU vs GPU

3

• a CPU consists of a few cores optimized for sequential
serial processing.

• a GPU uses thousands of smaller cores which are more
efficient for a massively parallel architecture aimed at
handling multiple functions at the same time (SIMD).

• Each processing unit on a GPU contains local memory
that improves data manipulation and reduces fetch time.

CPU vs GPU

4

CPU vs GPU

5

CPU vs GPU

• Multicore CPU: MIMD

Focused on latency.

Best single thread performance.

• Manycore GPU: SIMD

Focused on throughput.

Best for embarrassingly parallel tasks.

GPU microarchitecture history

7

and nowadays
…Pascal and Turing
(2018)

Fermi architecture

8

16 streaming multiprocessors (SM)

Each SM contains:
• 32 cuda cores

• 2 Warp Schedulers and dispatch units

• a bunch of registers,

• 64 KB configurable shared memory

• L1 cache

1 Warp = 32 threads

12

Turing TU102 Full GPU
with 72 SM Units

13

TURING STREAMING MULTIPROCESSOR
(SM) ARCHITECTURE

More about CUDA…

14

• CUDA is a set of developing tools to create applications that
will be executed on a GPU (Graphics Processing Unit).

• CUDA was developed by NVidia and can only run on NVidia
GPUs of G8x series and up.

• CUDA was released on February 15, 2007 for PC and Beta
version for MacOS X on August 19, 2008.

Heterogeneous Computing

17

• Heterogeneous computing refers to systems which use

more than one kind of processor or cores to maximize

performance.

• In CUDA terminology:

• Host is the CPU

• Device is the GPU

Stream Computing

20

Data set decomposed into a stream of elements.
Thread is the execution of the same function
(kernel) on each data element.

Serial processing of the data set using for
loop

23

Program Structure of CUDA

24

• A typical CUDA program has code intended both for the

GPU and the CPU.

• A traditional C program is a CUDA program with only the

host code.

• The host code can be compiled by a traditional C compiler

as the GCC

• The device code needs a special compiler to understand

the api functions that are used. For Nvidia GPUs, the

compiler is called the NVCC (Nvidia C Compiler).

Program Structure of CUDA

25

• The device code runs on the GPU while the host code runs on the

CPU.

• The NVCC processes a CUDA program, and separates the host code

from the device code (special CUDA keywords are looked for)

• The code intended to run on the GPU is marked with special CUDA

keywords for labeling data-parallel functions, called ‘Kernels’.

Kernels are decomposed to run in parallel on the multiple GPU cores.

• The device code is further compiled by the NVCC and executed on

the GPU.

Program Structure of CUDA

26

• Source files must have extension .cu

• CUDA is using kernel functions. These functions are executed

on the GPU simultaneously by many threads in parallel.

• CUDA provides several extensions to the C-language.

__global__ declares a kernel function that will be executed on

CUDA device. Return type for all these functions is void.

These functions are user defined.

• When a kernel function is called, configuration values are

provided for that function. Those values are included within

"<<<" and ">>>" (triple angle or chevron brackets)

Why threads and blocks

30

Threads have mechanisms to:

• Communicate

• Synchronize

Blocks do not have the same mechanisms

Thread Hierarchy

31

• Thread – Distributed by the CUDA runtime

(identified by threadIdx)

• Warp – A scheduling unit of up to 32 threads

• Block – A user defined group of 1 to 512 threads

(identiffied by blockIdx)

• Grid – A group of one or more blocks. A grid is created

for each CUDA kernel function

CUDA Warp

32

• CUDA utilizes SIMT (Single Instruction Multiple Thread)

• Warps are groups of 32 threads. Each warp receives a

single instruction and “broadcasts” it to all of its threads.

• Because a warp receives a single instruction, it will diverge

and converge as each thread branches independently

CUDA Built-In Variables

33

• dim3 gridDim;

–Dimensions of the grid in blocks (gridDim.z unused)

Number of blocks in grid = gridDim.x * gridDim.y

• dim3 blockDim;

–Dimensions of the block in threads

Number of threads in a block = blockDim.x * blockDim.y *

blockDim.z

• dim3 blockIdx;

–Block index within the grid

• dim3 threadIdx;

–Thread index within the block

Example Initializing Values

37

• To set dimensions:

dim3 grid(16,16); // grid = 16 x 16 blocks

dim3 block(32,32); // block = 32 x 32 threads

myKernel<<<grid, block>>>(...);

• which sets:

• grid.x = 16;

• grid.y = 16;

• block.x = 32;

• block.y = 32;

• block.z = 1;

Cuda Memories

39

Device Global Memory

and Data Transfer

43

• A typical GPU comes with its own global memory (DRAM).

This is called the device memory.

• To execute a kernel on the GPU, the programmer needs to

allocate separate memory on the GPU by writing code.

• After allocating memory on the device, data has to be

transferred from the host memory to the device memory.

• After the kernel is executed on the device, the result has

to be transferred back from the device memory to the

host memory.

• The allocated memory on the device has to be freed-up.

CUDA Example Program
- Addition on the Device

46

A simple kernel to add two integer tables:

__global__ void addKernel(int *c, int *a, int *b)

{

int i = threadIdx.x;

c[i] = a[i] + b[i];

}

__global__ is a CUDA C/C++ keyword meaning

addKernel() will execute on the device

addKernel() will be called from the host

GPU memory allocation

48

// Allocate GPU buffers for three vectors (two input, one output) .

cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));

if (cudaStatus != cudaSuccess) {

fprintf(stderr, "cudaMalloc failed!");

goto Error;

}

cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));

if (cudaStatus != cudaSuccess) {

fprintf(stderr, "cudaMalloc failed!");

goto Error;

}

cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));

if (cudaStatus != cudaSuccess) {

fprintf(stderr, "cudaMalloc failed!");

goto Error;

}

Freeing device memory

53

cudaFree(dev_c);

cudaFree(dev_a);

cudaFree(dev_b);

Parallel vector addition (1)

54

• We can perform parallel vector addition using:

• Many blocks with one thread each

addKernel <<<size, 1 >>> (dev_c, dev_a, dev_b);

However, this is NOT a good idea at all.

• One block with many threads

addKernel <<<1, size >>> (dev_c, dev_a, dev_b);

Use of only 1 block, i.e. only 1 SM on the GPU results to very poor

performance. In practice, we need to use multiple blocks to utilize

all SMs.

Parallel vector addition (2)

55

• We can perform parallel vector addition using:

dim3 blocksPerGrid(N/256,1,1); //assuming 256 divides N exactly

dim3 threadsPerBlock(256,1,1);

addKernel<<<blocksPerGrid, threadsPerBlock>>>(dev_c, dev_a, dev_b);

• We have chosen to use 256 threads per block, which is

typically a good number (multiple of 32)

60

GPU optimization guide (3)
• Host (CPU) data allocations are pageable by default. The GPU cannot access data directly from

pageable host memory, so when a data transfer from pageable host memory to device memory is

invoked, the CUDA driver must first allocate a temporary page-locked, or “pinned”, host array, copy

the host data to the pinned array, and then transfer the data from the pinned array to device memory,

as illustrated below.

• Allocate pinned host memory in CUDA C/C++ using cudaMallocHost() or cudaHostAlloc(), and

deallocate it with cudaFreeHost()

https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc/

http://docs.nvidia.com/cuda/cuda-runtime-api/index.html
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html

GPU optimization guide (4)
Write the code so that consecutive threads access consecutive memory locations (memory coalescing)

63

GPU optimization guide (5.2)

65

Corner Turning: from global to shared memory

GPU optimization guide (6)

66

• Sequential copy and execute

cudaMemcpy(a_d, a_h, N*sizeof(float), dir);

kernel<<<N/nThreads, nThreads>>>(a_d);

• Staged concurrent copy and execute

size=N*sizeof(float)/nStreams;

for (i=0; i<nStreams; i++) {

offset = i*N/nStreams;

cudaMemcpyAsync(a_d+offset, a_h+offset, size, dir, stream[i]);

kernel<<<N/(nThreads*nStreams), nThreads, 0, stream[i]>>>(a_d+offset); }

Stream is a sequence of operations that execute in issue-order on the GPU.

CUDA operations in different streams may run concurrently.

CUDA operations from different streams may be interleaved

CUDA Convolution

implemented samples

69

• Convolution FFT2D

• Convolution Separable

Implemented samples installed with CUDA in ProgramData\NVIDIA

Corporation\CUDA Samples\

Bibliography

72

• nvidia.com

• Supercomputing for the Masses by Peter Zalutski

• Basic Concepts in GPU Computing by Mao Gao

• Parallel Programming with CUDA Matthew Guidry Charles McClendon

• https://www.tutorialspoint.com/cuda/

• https://www3.nd.edu/

• http://users.wfu.edu

• http://www.bsc.es/

• https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/

• https://www.epcc.edu

• https://www.micc.unifi.it/

• https://jhui.github.io/

https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
https://www.epcc.edu/
https://www.micc.unifi.it/
https://jhui.github.io/

Q & A

Thank you very much for your attention!

More material in

http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas

pitas@csd.auth.gr

73

