CUDA: Compute Unified Devir.(e‘TML
Architecture
summary

P. Bassia, Prof. loannis Pitas
Aristotle University of Thessaloniki
pitas@csd.auth.gr
www.alla.csd.auth.gr
Version 2.4.1

(vmL

What 1s CUDA?

CUDA is a parallel computing platform and programming model
iInvented by NVIDIA. It enables dramatic increases in computing

performance by exploiting the power of the Graphics Processing
Unit (GPU).

| | Artificial Intelligence &)
Information Analysis Lab

CPU vs GPU

« a CPU consists of a few cores optimized for sequential
serial processing.

* a GPU uses thousands of smaller cores which are more
efficient for a massively parallel architecture aimed at
handling multiple functions at the same time (SIMD).

» Each processing unit on a GPU contains local memory
that improves data manipulation and reduces fetch time.

|| Artificial Intelligenc
Information Analysis Lb

CPU vs GPU

ALU | ALU

Control

ALU | ALU

o _
i,

CPU GPU

|| Artificial Infelligen
Informatio Aly Lb

(vmL

CPU vs GPU

The Difference between a CPU and GPU

|| Artificial Intelligen
Informatio Aly Lb

CPU vs GPU

* Multicore CPU: MIMD
Focused on latency.
Best single thread performance.

« Manycore GPU: SIMD
Focused on throughput.

Best for embarrassingly parallel tasks.

|| Artificial Intelligen
Informatio AIyLb

GPU microarchitecture history
GPU Roadmap

and nowadays
...Pascal and Turing
(2018)

s
&
a
4
QO
-
-

O
[

o

| | Artificial Intelligence &
Information Analysis Lab

Fermi architecture

16 streaming multiprocessors (SM)

Each SM contains:

e 32 cudacores
* 2 Warp Schedulers and dispatch units

Host Interface

* abunch of registers,

L2 Cache

~* 64 KB configurable shared memory
"+ Llcache

e,
i,
w‘
.,
.
o

°
m
a

i —

|—
m

-

4]

‘\:\

.'_.‘:3_%“\#
1 Warp =32 threads

Fermi’s 16 SM are positioned around a common L2 cache. Each SM is a vertical
rectangular strip that contain an orange portion (scheduler and dispatch), a green portion

I | Atificial Intelligence & (execution units), and light blue portions (register file and L1 cache).
Information Analysis Lab -

PCI Express 3.0 Host Interface

Memory Controller
10100009 Lowaw

Memory Controller
10|0U0D AIOWaN

Turing TU102 Full GPU
with 72 SM Units

Memory Controller
10||00U0) AsoLow

=
2
3
o
2
o
°
3
q
-
5
]

Memory Controller

100007 Arowow

w 5N ™ 5w N
7o o ol rcom R icom |

Memory Controller

W £
[P
e

s > =
Rastor Engmo

J0)100u0) AIowow

Memory Controller

| | Artificial Intelligence & 19
Information Analysis Lab

9®

Artificial Intelligence &
Information Analysis Lab

Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR

INT32 FP32 CORES

LOIST LO/ST LO/IST LDIST SFU

Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR

INT32 FP32 CORES

LDIST LO/ST LO/IST LDIST SFU

Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR

INT32 FP32 CORES

LO/ST LDIST LD/ST LDIST SFU

Warp Scheduler + Dispatch {32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR

INT32 FP32 CORES

LOIST LDIST LDIST LODIST SFU

96KB L1 Data Cache / Shared Memory

Tex

|

CORE

||

|

~ <
e

™~
! A
L

5

VML

TURING STREAMING MULTIPROCESSOR

(SM) ARCHITECTURE

13

More about CUDA... @ML

« CUDA is a set of developing tools to create applications that
will be executed on a GPU (Graphics Processing Unit).

 CUDA was developed by NVidia and can only run on NVidia
GPUs of G8x series and up.

 .CUDA was released on February 15, 2007 for PC and Beta
version for MacOS X on August 19, 2008.

| | Atificial Intelligence & y
Information Analysis Lab

Heterogeneous Computing @ML

« Heterogeneous computing refers to systems which use
more than one kind of processor or cores to maximize
performance.

* |In CUDA terminology:
* Host is the CPU
* Device is the GPU

| | Artificial Intelligence & 17
Information Analysis Lab

9®

VML

Stream Computing

LRI A T T

|r|-.n-'-r'.nr

L
o

T

Artificial Intelligence &
Information Analysis Lab

Serial processing of the data set using for
loop

Data set decomposed into a stream of elements.
Thread is the execution of the same function
(kernel) on each data element.

20

Qo

Artificial Intelligence &
Information Analysis Lab

Execute parallel

Processing flow
on CUDA

in each core

J

VML

23

Program Structure of CUDA C\ZML

* A typical CUDA program has code intended both for the
GPU and the CPU.

A traditional C program is a CUDA program with only the
host code.

* The host code can be compiled by a traditional C compiler
as the GCC

 The device code needs a special compiler to understand
the api functions that are used. For Nvidia GPUs, the
compiler is called the NVCC (Nvidia C Compiler).

Artificial Intelligen
OllOlfmi AIyLb 24

Program Structure of CUDA @ML

« The device code runs on the GPU while the host code runs on the
CPU.

« The NVCC processes a CUDA program, and separates the host code
from the device code (special CUDA keywords are looked for)

 The code intended to run on the GPU is marked with special CUDA
keywords for labeling data-parallel functions, called ‘Kernels’.
Kernels are decomposed to run in parallel on the multiple GPU cores.

* The device code is further compiled by the NVCC and executed on
the GPU.

| | Artificial Intelligence & 55
Information Analysis Lab

Program Structure of CUDA @ML

 Source files must have extension .cu

 CUDA Is using kernel functions. These functions are executed
on the GPU simultaneously by many threads in parallel.

 CUDA provides several extensions to the C-language.
__global declares a kernel function_ that will be executed on
CUDA device. Return type for all these functions is void.
These functions are user defined.

 When a kernel function is called, configuration values are
provided for that function. Those values are included within
"<<<" and ">>>" (triple angle or chevron brackets)

| | Atificial Intelligence & .
Information Analysis Lab

Why threads and blocks

Threads have mechanisms to:
« Communicate
* Synchronize

Blocks do not have the same mechanisms

|| Artificial Intelligen
Informatio AIyLb

30

Thread Hierarchy YL

- Thread
 Thread — Distributed by the CUDA runtime {
(identified by threadldx)
« Warp — A scheduling unit of up to 32 threads E
* Block — A user defined group of 1 to 512 threads X{{{{

(identiffied by blockldx)

. Grid — A group of one or more blocks. A grid is created - Grid
for each CUDA kernel function {{{N 8/({/ K{(((KZ{(X

| | Atificial Intelligence & .
Information Analysis Lab

CUDA Warp @ML

« CUDA utilizes SIMT (Single Instruction Multiple Thread)

 Warps are groups of 32 threads. Each warp receives a
single instruction and “broadcasts” it to all of its threads.

« Because a warp receives a single instruction, it will diverge
and converge as each thread branches independently

|| Artificial Intelligenc .
Information Analysis Lb

CUDA Built-In Variables (VML

 dim3 gridDim;
—Dimensions of the grid in blocks (gridDim.z unused)
Number of blocks in grid = gridDim.x * gridDim.y
« dim3 blockDim;
—Dimensions of the block in threads

Number of threads in a block = blockDim.x * blockDim.y *
blockDim.z

 dim3 blockldx;

—Block index within the grid
 dim3threadldx;

—Thread index within the block

| | Artificial Intelligence & 33
Information Analysis Lab

Example Initializing Values @ML

* To set dimensions:
dim3 grid(16,16); // grid = 16 x 16 blocks
dim3 block(32,32); // block = 32 x 32 threads
myKernel<<<grid, block>>>(...);

* which sets:
e grid.x = 16;
e grid.y = 16;
* block.x = 32;
* block.y = 32;
* block.z =1;

| | Atificial Intelligence & .
Information Analysis Lab

Cuda Memories

(vmL

=

Device Global Memory C\ZML

and Data Transfer
A typical GPU comes with its own global memory (DRAM).

This is called the device memory.

* To execute a kernel on the GPU, the programmer needs to
allocate separate memory on the GPU by writing code.

« After allocating memory on the device, data has to be
transferred from the host memory to the device memory.

« After the kernel is executed on the device, the result has
to be transferred back from the device memory to the
host memory.

* The allocated memory on the device has to be freed-up.

Attificial Intelligen
O”lemi AIyLb 43

CUDA Example Program
- Addition on the Device @ML

A simple kernel to add two integer tables:

__global wvoid addKernel (int *c, int *a, 1int *Db)
{

int 1 = threadIdx.x;

c[i] = al[i] + bl[i];

__global __is a CUDA C/C++ keyword meaning
addKernel() will execute on the device
addKernel() will be called from the host

| | Atificial Intelligence & i
Information Analysis Lab

GPU memory allocation

Il Allocate GPU buffers for three vectors (two input, one output)
cudaStatus = cudaMalloc ((void**)&dev c, size * sizeof (int));

if (cudaStatus != cudaSuccess) {
fprintf (stderr, "cudaMalloc failed!");

goto Error;

}

cudaStatus = cudaMalloc((void**)&dev a, size * sizeof (int));

1f (cudaStatus != cudaSuccess) {
fprintf (stderr, "cudaMalloc failed!");

goto Error;

}

cudaStatus = cudaMalloc((void**)&dev b, size * sizeof (int)).;

i1f (cudaStatus != cudaSuccess) {
fprintf (stderr, "cudaMalloc failed!™);

goto Error;

| | Arhflcml Intelligence &
Information Analysis Lab

VML

48

Freeing device memory @ML

cudalree (dev c);

cudalree (dev a);

cudalree (dev Db);

Artificial Intelligen
O”OIf rmation An Iy 53

Parallel vector addition (1) @ML

 We can perform parallel vector addition using:
« Many blocks with one thread each
addKernel <<<size, 1 >>> (dev ¢, dev a, dev b);
However, this is NOT a good idea at all.
* One block with many threads
addKernel <<<1, size >>> (dev ¢, dev a, dev b);

Use of only 1 block, i.e. only 1 SM on the GPU results to very poor

performance. In practice, we need to use multiple blocks to utilize
all SMs.

| | Artificial Intelligence & 54
Information Analysis Lab

Parallel vector addition (2) @ML

 We can perform parallel vector addition using:

dim3 blocksPerGrid(N/256,1,1); //assuming 256 divides N exactly
dim3 threadsPerBlock(256,1,1);
addKernel<<<blocksPerGrid, threadsPerBlock>>>(dev c, dev_a, dev D) ;

* We have chosen to use 256 threads per block, which is
typically a good number (multiple of 32)

| | Artificial Intelligence & 55
Information Analysis Lab

=

o~ & W M=

L e e e R =R R s AR RS R R e R R e el el el vl Eell Rl el Kl e Yo
O~ dOm &WN = OO0 ~dOM &WN = OO0~ 0O &EWN = O

40
41
42
43
44
45
46
47
48
49

50
54
)

Microsoft Excel - CUDA_Occupancy_Calculatorxls [KordoTaon Asitoupyiag cupporotnTac]

E

F G H | J K

L

Click Here for detailed instructions on how to use this occupancy calculator.

For mere information on NVIDIA CUDA, visit httpi//developer.nvidia.com/cuda

Your chosen resource usage is indicated by the red triangle on the graphs. The other
data points represent the range of possible block sizes, register counts, and shared
memory allocation.

Multiprocessor Warp Occupancy
(# warps)

Impact of Varying Block Size

My Block Size; 128

/ﬁ_

L

/

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 9601024
Threads Per Block

Multiprocessor Warp Occupancy

(#warps)

64

B&

48

40

32

24

Impact of Varying Shared Memery Usage Per Block

3

Shared I

4

;

bl

960F 1

¥d
]
L

ar0e

FrLo

618 +——
oFE0L
88ETL
QEERL
Facal
ZEFEL
08F0z
QEGIE
QLGHE
FTI9E
o988

Shared Memory Per Block

16384 —— 32768 —— 65536 —— 98304

OZL0E

204ZE

A B C D
CUDA Occupancy Calculator
Just follow steps 1. 2, and 3 below! (or click here for help)
1.) Select Compute Capability (click): 7.0 ¥ | (Help)
1.b) Select Shared Memory Size Config (bytes) 32768
2.) Enter your resource usage:
Threads Per Block 128 Help)
Reqgisters Per Thread 64
Shared Memory Per Block (bytes) 4096
(Don't edit anything below this line)
3.) GPU Occupancy Data is displayed here and in the graphs:
Active Threads per Multiprocessor 1024 [Help)
Active Warps per Multiprocessor 32
Active Thread Blocks per Multiprocessor 8
Occupancy of each Multiprocessor 50%
Physical Limits for GPU Compute Capability: 7.0
Threads per Warp 32
Max Warps per Multiprocessor 64
Max Thread Blocks per Multiprocessor 32
Max Threads per Multiprocessor 2048
Maximum Thread Block Size 1024
Registers per Multiprocessor 65536
Max Registers per Thread Block 65536
Max Registers per Thread 255
Shared Memory per Multiprocessor (bytes) 32768
Max Shared Memory per Block 32768
Reqgister allocation unit size 256
Register allocation granularity warp
Shared Memory allocation unit size 256
Warp allocation granularity 4
= Allocatable
Allocated Resources Per Block Limit Per SM Blocks Per SM
Warps (Threads Per Block / Threads Per Warp) | 4 64 16
Reqgisters (Warp limit per SM due to per-warp reg count| 4 32 8
Shared Memory (Byies) | 4096 32768 8

Note: SM is an abbrevistion for (Stresming) Multiprocessor

Maximum Thread Blocks Per Multiprocessor

Blocks/SM_* Warps/Block = Warps/SM

Multiprocessor Warp Occupancy
(# warps)

Impact of Varying Register Count Per Thread

ly[Register Count;

Limited by Max Warps or Max Blocks per Multiprocessor 16

Note: Orccupancy limiter is shown in crange

4 » M| Calculator /Help “GPU Data Copyright & License

2

Physical Max Warps/SM = 64

Mecunancy = 22 | R4 = R0

GPU optimization guide (3) VML

. Host (CPU) data allocations are pageable by default. The GPU cannot access data directly from
pageable host memory, so when a data transfer from pageable host memory to device memory is
invoked, the CUDA driver must first allocate a temporary page-locked, or “pinned”, host array, copy
the host data to the pinned array, and then transfer the data from the pinned array to device memory,
as illustrated below.

. Allocate pinned host memory in CUDA C/C++ using cudaMallocHost() or cudaHostAlloc(), and

deallocate it with cudaFreeHost()

Pageable Data Transfer Pinned Data Transfer

Device Device

Host Host

Pageable Pinned Pinned
Memory Memory Memory

https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc/

| | Artificial Intelligence &
Information Analysis Lab

http://docs.nvidia.com/cuda/cuda-runtime-api/index.html
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html

GPU optimization guide (4) @ML

Write the code so that consecutive threads access consecutive memory locations (memory coalescing)

Access direction in
Kernel code Access

direction

in Kernel
code Noo Noq Npo Nys

v N3o N34 N3o N3j

Load iteration O || Load iteration 1
Load iteration 1 To Tq To T3||To T4 T2 T3
TO T1 T2 T3 a8 8 V3 a8

Load iteration O

, , PALIEY N1o Niqg Nyo Nyg Nog Nog Nyp Nag INgg N3q N3s N3
M

Mo 0|Mo,1|Mg 2

| | Atificial Intelligence &
Information Analysis Lab

63

GPU optimization guide (5.2) @ML

Corner Turning: from global to shared memory

dM dN t
Original
Access E
Pattern
* — * v Copy into
shared
memory
d_M dN
Tiled \-
Access
Pattern
Perform
multiplication
with shared memory
values

| | Atificial Intelligence & .
Information Analysis Lab

GPU optimization guide (6) @ML

« Sequential copy and execute
cudaMemcpy(a_d, a_h, N*sizeof(float), dir); Copy data
kernel<<<N/nThreads, nThreads>>>(a_d), Execute
« Staged concurrent copy and execute
size=N*sizeof(float)/nStreams;
for (i=0; i<nStreams; i++) {
offset = i*N/nStreams;
cudaMemcpyAsync(a_d+offset,-a._h+offset, size, dir, stream[i]);
kernel<<<N/(nThreads*nStreams), nThreads, 0, stream[i]>>>(a_d+offset); }

Copy data | | - | | || |

Execute

Stream Is a sequence of operations that execute in issue-order on the GPU.
CUDA operations in different streams may run concurrently.
CUDA operations from different streams may be interleaved

| | Artificial Intelligence & 66
Information Analysis Lab

CUDA Convolution C\ZML
Implemented samples

« Convolution FFT2D
« Convolution Separable

Implemented samples installed with CUDA in ProgramData\NVIDIA
Corporation\CUDA Samples\

Attificial Intelligen
O”lemi AIy Lb 69

9®

Bibliography

nvidia.com

Supercomputing for the Masses by Peter Zalutski

Basic Concepts in GPU Computing by Mao Gao

Parallel Programming with CUDA Matthew Guidry Charles McClendon
https://www.tutorialspoint.com/cuda/

https://www3.nd.edu/

http://users.wfu.edu

http://www.bsc.es/
https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
hitps://www.epcc.edu

https://www.micc.unifi.it/

https://jhui.github.io/

Artificial Intelligence &
Information Analysis Lab

VML

72

https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
https://www.epcc.edu/
https://www.micc.unifi.it/
https://jhui.github.io/

(vmL

Q& A

Thank you very much for your attention!

More material in
http://icarus.csd.auth.gr/cvmisweb-lecture-series/ /

Contact: Prof. |. Pitas ——
pitas@csd.auth.gr

| | Attificial Intelligence & .
Information Analysis Lab

