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What is CUDA?

CUDA is a parallel computing platform and programming model 

invented by NVIDIA. It enables dramatic increases in computing 

performance by exploiting the power of the Graphics Processing 

Unit (GPU).
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CPU vs GPU
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• a CPU consists of a few cores optimized for sequential
serial processing.

• a GPU uses thousands of smaller cores which are more 
efficient for a massively parallel architecture aimed at 
handling multiple functions at the same time (SIMD).

• Each processing unit on a GPU contains local memory 
that improves data manipulation and reduces fetch time.



CPU vs GPU
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CPU vs GPU
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CPU vs GPU

• Multicore CPU: MIMD

Focused on latency.

Best single thread performance.

• Manycore GPU: SIMD

Focused on throughput.

Best for embarrassingly parallel tasks.



GPU microarchitecture history
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and nowadays 
…Pascal and Turing 
(2018)



Fermi architecture

8

16 streaming multiprocessors (SM)

Each SM contains: 
• 32 cuda cores

• 2 Warp Schedulers and dispatch units 

• a bunch of registers, 

• 64 KB configurable shared memory

• L1 cache 

1 Warp = 32 threads
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Turing TU102 Full GPU 
with 72 SM Units
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TURING STREAMING MULTIPROCESSOR 
(SM) ARCHITECTURE



More about CUDA…
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• CUDA is a set of developing tools to create applications that 
will be executed on a GPU (Graphics Processing Unit).

• CUDA was developed by NVidia and can only run on NVidia
GPUs of G8x series and up.

• CUDA was released on February 15, 2007 for PC and Beta 
version for MacOS X on August 19, 2008.



Heterogeneous Computing
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• Heterogeneous computing refers to systems which use 

more than one kind of processor or cores to maximize 

performance.

• In CUDA terminology:

• Host is the CPU 

• Device is the GPU



Stream Computing
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Data set decomposed into a stream of elements.
Thread is the execution of the same function 
(kernel) on each data element.

Serial processing of the data set using for
loop
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Program Structure of CUDA
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• A typical CUDA program has code intended both for the 

GPU and the CPU. 

• A traditional C program is a CUDA program with only the 

host code. 

• The host code can be compiled by a traditional C compiler 

as the GCC

• The device code needs a special compiler to understand 

the api functions that are used. For Nvidia GPUs, the 

compiler is called the NVCC (Nvidia C Compiler).



Program Structure of CUDA
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• The device code runs on the GPU while the host code runs on the 

CPU. 

• The NVCC processes a CUDA program, and separates the host code 

from the device code (special CUDA keywords are looked for) 

• The code intended to run on the GPU is marked with special CUDA

keywords for labeling data-parallel functions, called ‘Kernels’. 

Kernels are decomposed to run in parallel on the multiple GPU cores.

• The device code is further compiled by the NVCC and executed on 

the GPU.



Program Structure of CUDA
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• Source files must have extension .cu

• CUDA is using kernel functions. These functions are executed 

on the GPU simultaneously by many threads in parallel.

• CUDA provides several extensions to the C-language. 

__global__ declares a kernel function that will be executed on 

CUDA device. Return type for all these functions is void. 

These functions are user defined.

• When a kernel function is called, configuration values are 

provided for that function. Those values are included within 

"<<<" and ">>>" (triple angle or chevron brackets)



Why threads and blocks
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Threads have mechanisms to:

• Communicate

• Synchronize

Blocks do not have the same mechanisms



Thread Hierarchy
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• Thread – Distributed by the CUDA runtime 

(identified by threadIdx)

• Warp – A scheduling unit of up to 32 threads

• Block – A user defined group of 1 to 512 threads

(identiffied by blockIdx)

• Grid – A group of one or more blocks. A grid is created 

for each CUDA kernel function



CUDA Warp

32

• CUDA utilizes SIMT (Single Instruction Multiple Thread)

• Warps are groups of 32 threads. Each warp receives a 

single instruction and “broadcasts” it to all of its threads. 

• Because a warp receives a single instruction, it will diverge 

and converge as each thread branches independently



CUDA Built-In Variables 
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• dim3 gridDim; 

–Dimensions of the grid in blocks (gridDim.z unused)

Number of blocks in grid = gridDim.x * gridDim.y

• dim3 blockDim; 

–Dimensions of the block in threads

Number of threads in a block = blockDim.x * blockDim.y * 

blockDim.z

• dim3 blockIdx; 

–Block index within the grid 

• dim3 threadIdx; 

–Thread index within the block 



Example Initializing Values
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• To set dimensions:

dim3 grid(16,16); // grid = 16 x 16 blocks

dim3 block(32,32); // block = 32 x 32 threads

myKernel<<<grid, block>>>(...);

• which sets:

• grid.x = 16;

• grid.y = 16;

• block.x = 32;

• block.y = 32;

• block.z = 1;



Cuda Memories
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Device Global Memory 

and Data Transfer

43

• A typical GPU comes with its own global memory (DRAM). 

This is called the device memory.

• To execute a kernel on the GPU, the programmer needs to 

allocate separate memory on the GPU by writing code.

• After allocating memory on the device, data has to be 

transferred from the host memory to the device memory.

• After the kernel is executed on the device, the result has 

to be transferred back from the device memory to the 

host memory.

• The allocated memory on the device has to be freed-up.



CUDA Example Program 
- Addition on the Device
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A simple kernel to add two integer tables:

__global__ void addKernel(int *c, int *a, int *b)

{

int i = threadIdx.x;

c[i] = a[i] + b[i];

}

__global__ is a CUDA C/C++ keyword meaning

addKernel() will execute on the device

addKernel() will be called from the host



GPU memory allocation
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// Allocate GPU buffers for three vectors (two input, one output)    .

cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));

if (cudaStatus != cudaSuccess) {

fprintf(stderr, "cudaMalloc failed!");

goto Error;

}

cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));

if (cudaStatus != cudaSuccess) {

fprintf(stderr, "cudaMalloc failed!");

goto Error;

}

cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));

if (cudaStatus != cudaSuccess) {

fprintf(stderr, "cudaMalloc failed!");

goto Error;

}



Freeing device memory
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cudaFree(dev_c);

cudaFree(dev_a);

cudaFree(dev_b);



Parallel vector addition (1)
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• We can perform parallel vector addition using:

• Many blocks with one thread each

addKernel <<<size, 1 >>> (dev_c, dev_a, dev_b);

However, this is NOT a good idea at all.

• One block with many threads

addKernel <<<1, size >>> (dev_c, dev_a, dev_b);

Use of only 1 block, i.e. only 1 SM on the GPU results to  very poor 

performance. In practice, we need to use multiple blocks to utilize 

all SMs.



Parallel vector addition (2)
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• We can perform parallel vector addition using:

dim3 blocksPerGrid(N/256,1,1); //assuming 256 divides N exactly

dim3 threadsPerBlock(256,1,1);

addKernel<<<blocksPerGrid, threadsPerBlock>>>(dev_c, dev_a, dev_b);

• We have chosen to use 256 threads per block, which is

typically a good number (multiple of 32)
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GPU optimization guide (3)
• Host (CPU) data allocations are pageable by default. The GPU cannot access data directly from 

pageable host memory, so when a data transfer from pageable host memory to device memory is 

invoked, the CUDA driver must first allocate a temporary page-locked, or “pinned”, host array, copy 

the host data to the pinned array, and then transfer the data from the pinned array to device memory, 

as illustrated below.

• Allocate pinned host memory in CUDA C/C++ using cudaMallocHost() or cudaHostAlloc(), and 

deallocate it with cudaFreeHost()

https://devblogs.nvidia.com/how-optimize-data-transfers-cuda-cc/

http://docs.nvidia.com/cuda/cuda-runtime-api/index.html
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html


GPU optimization guide (4)
Write the code so that consecutive threads access consecutive memory locations (memory coalescing)
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GPU optimization guide (5.2)
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Corner Turning: from global to shared memory



GPU optimization guide (6)
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• Sequential copy and execute

cudaMemcpy(a_d, a_h, N*sizeof(float), dir); 

kernel<<<N/nThreads, nThreads>>>(a_d);

• Staged concurrent copy and execute

size=N*sizeof(float)/nStreams; 

for (i=0; i<nStreams; i++) { 

offset = i*N/nStreams;

cudaMemcpyAsync(a_d+offset, a_h+offset, size, dir, stream[i]);

kernel<<<N/(nThreads*nStreams), nThreads, 0, stream[i]>>>(a_d+offset); }

Stream is a sequence of operations that execute in issue-order on the GPU.

CUDA operations in different streams may run concurrently. 

CUDA operations from different streams may be interleaved



CUDA Convolution 

implemented samples
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• Convolution FFT2D

• Convolution Separable

Implemented samples installed with CUDA in ProgramData\NVIDIA 

Corporation\CUDA Samples\



Bibliography

72

• nvidia.com

• Supercomputing for the Masses by Peter Zalutski

• Basic Concepts in GPU Computing by Mao Gao

• Parallel Programming with CUDA Matthew Guidry Charles McClendon

• https://www.tutorialspoint.com/cuda/

• https://www3.nd.edu/

• http://users.wfu.edu

• http://www.bsc.es/

• https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/

• https://www.epcc.edu

• https://www.micc.unifi.it/

• https://jhui.github.io/

https://devblogs.nvidia.com/nvidia-turing-architecture-in-depth/
https://www.epcc.edu/
https://www.micc.unifi.it/
https://jhui.github.io/


Q & A

Thank you very much for your attention!

More material in 

http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas

pitas@csd.auth.gr
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