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• GPS object localization

• Visual 3D object localization using 3D maps

• Multisensor object localization

• Multi-view object localization

3D object localization
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Object Localization using 
GPS

• Tests on Emlid Reach RTK GPS performance using:

• GPS base station

• Target GPS

• Radio link.
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Object Localization using 
GPS

• Two different pairs of antennas:

• 1 Ashtech ASH-660 on base + 1 Trimble AV33 on rover.

• 2 Tallysman TW4721 (supplied with Reach) with ≥ 10cm ground plane.

• Target moving and antenna tilting.

Target moving 
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antenna

(Reach rover)



Object Localization using 
GPS

• Trial results:



Object Localization using 
GPS

• Conclusions

• Rover with RTK fix solution for both antenna testings.

• GPS RAW data (UBX) and position (LLH, NMEA or ENU) logged at 5Hz on

Reach.

• Better performance with ASH-660 + AV33 antennas.



• GPS object localization

• Visual 3D object localization using 3D maps

• Multisensor object localization

• Multi-view object localization

3D object localization



3D object localization using 3D

maps
• Specify target on the frame focal plane of the drone video camera by the

object detection procedure.

• Raycasting from the object’s focal plane onto the 3D octomap according

to camera drone COP.

• The rays from the COP (camera center of projection) hit the 3D octomap

to specific voxels which is the location of the object in the 3D

environment.

• Provided that we know the intrinsic and extrinsic parameters of the

drone camera.



3D object localization using

3D maps



• GPS object localization

• Visual 3D object localization using 3D maps

• Multisensor object localization

• Multi-view object localization

3D object localization



6 DoF localization

• Multi-sensor MCL for real-time 6DoF 
localization:

• MCL Prediction: LIDAR odometry

• Update of particles X, Y, Yaw: LIDAR point-clouds +  
camera features

• Update of particles Z, pitch, roll: altimeter + IMU

• MCL Update using the consistency of LIDAR point clouds 
with the map

• SLAM-based localization
• SLAM that uses a previous map

• Rely on previous maps but at the same time 
incorporates map changes



6 DoF localization



Optimal multi-sensor 

multi-drone 3D object 

localization & tracking



Optimal multi-sensor 

multi-drone 3D object 

localization & tracking



Target localization
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• GPS object localization

• Visual 3D object localization using 3D maps

• Multisensor object localization

• Multi-view object localization

3D object localization



Multi-view Crowd Heatmap
Fusion



• AirSim Synthetic Dataset: 
A mountainous terrain model with moving 
crowds set on the sides of a road

• Three (3) simulated drones were 
deployed to follow three cyclists (one 
drone per cyclist).

• Performance metrics: mean IoU for the N number of frames

Multi-view Crowd Heatmap
Fusion

𝐼𝑜𝑈𝑚𝑒𝑎𝑛 =
1

𝑁
෍

𝑖=1

𝑁
𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑖
𝑈𝑛𝑖𝑜𝑛𝑖



Multi-view Crowd Heatmap
Fusion

• Real world Dataset: Multiple drones (2) are seeing 

a crowd existing in a flat terrain

• Multi-view video sequences are derived.



• The proposed method outperforms the single-view method
• When the exponential decay of the blended probability is conducted with smoother way (for λ smaller), the proposed 

method introduces the forgetting policy to the previous detections with more significance.
• The maximum of mean IoU value for probability blending with parameter α= 0.2 and forgetting policy namely for λ=0.0005

Multi-view Crowd Heatmap
Fusion



Q & A

Thank you very much for your attention!

More material in 
http://icarus.csd.auth.gr/cvml-web-lecture-series/ 

Contact: Prof. I. Pitas
pitas@csd.auth.gr
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