

Contributors: R. Cunha (IST, Portugal) J. Ramiro Martinez-de Dios (University of Seville) E. Kakaletsis, C. Symeonidis Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 2.6





#### **3D object localization**

- GPS object localization
- Visual 3D object localization using 3D maps
- Multisensor object localization
- Multi-view object localization





#### **Target RTK GPS**



#### Optimal multi-sensor multidrone 3D object localization & tracking

**Target velocities** 



Information Analysis Lab

# Object Localization using GPS



- Tests on Emlid Reach RTK GPS performance using:
  - GPS base station





#### **Coordinate systems**

|  | Name            | Origin                         | Orientation                                                                | $\begin{array}{c} D \hat{z} \{D\} \\ D \hat{z} \{C\} \\ C \hat{y} \in \hat{z} \\ I p_{C} \\ D \hat{z} \{C\} \\ I p_{C} \\ T \hat{z} \\ 1 \\ T \end{array}$ |
|--|-----------------|--------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | {I}Inerti<br>al | Mission<br>parame<br>ter       | X – Y – Z<br>East – North – Up (ENU)                                       |                                                                                                                                                            |
|  | {D}Dron<br>e    | Center<br>of mass              | x-axis aligned with front axis,<br>z-axis aligned with rotors'<br>axis     |                                                                                                                                                            |
|  | {C}Cam<br>era   | Center<br>of<br>camera<br>lens | z-axis aligned with optical<br>axis, x-axis points right in<br>image plane |                                                                                                                                                            |
|  | {T}Targ<br>et   | (?)<br>GPS<br>antenn           | z-axis up,<br>x-axis aligned with heading                                  | $\{I\} \xrightarrow{I \hat{x}} I_{p_T} \xrightarrow{T \hat{x}}$                                                                                            |
|  | Artificial II   | a<br>telligence &              |                                                                            | $\hat{x}$                                                                                                                                                  |

Information Analysis Lab

## Object Localization using GPS



- Two different pairs of antennas:
  - 1 Ashtech ASH-660 on base + 1 Trimble AV33 on rover.
  - 2 Tallysman TW4721 (supplied with Reach) with ≥ 10cm ground plane.
- Target moving and antenna tilting.



Target moving and tilting antenna (Reach rover)

#### **Object Localization using GPS**



• Trial results:



#### **Object Localization using GPS**



- Conclusions
  - Rover with RTK fix solution for both antenna testings.
  - GPS RAW data (UBX) and position (LLH, NMEA or ENU) logged at 5Hz on Reach.
  - Better performance with ASH-660 + AV33 antennas.





#### **3D object localization**

- GPS object localization
- Visual 3D object localization using 3D maps
- Multisensor object localization
- Multi-view object localization



## 3D object localization using 3D **VML**

#### maps

- Specify target on the frame focal plane of the drone video camera by the object detection procedure.
- Raycasting from the object's focal plane onto the 3D octomap according to camera drone COP.
- The rays from the COP (camera center of projection) hit the 3D octomap to specific voxels which is the location of the object in the 3D environment.
- Provided that we know the intrinsic and extrinsic parameters of the drone camera.



### 3D object localization using 3D maps







#### **3D object localization**

- GPS object localization
- Visual 3D object localization using 3D maps
- Multisensor object localization
- Multi-view object localization



#### **6 DoF localization**

- Multi-sensor MCL for real-time 6DoF localization:
  - MCL Prediction: LIDAR odometry
  - Update of particles X, Y, Yaw: LIDAR point-clouds + camera features
  - Update of particles Z, pitch, roll: altimeter + IMU
  - MCL Update using the consistency of LIDAR point clouds with the map
- SLAM-based localization
  - SLAM that uses a previous map
  - Rely on previous maps but at the same time incorporates map changes





Xr

#### **6 DoF localization**





#### Optimal multi-sensor multi-drone 3D object localization & tracking





#### Optimal multi-sensor multi-drone 3D object localization & tracking







#### Optimal multi-sensor multi-drone 3D object localization & tracking



**Target localization** 



Information Analysis Lab



#### **3D object localization**

- GPS object localization
- Visual 3D object localization using 3D maps
- Multisensor object localization
- Multi-view object localization



#### Multi-view Crowd Heatmap Fusion



(VML

#### Multi-view Crowd Heatmap Fusion



• *AirSim Synthetic Dataset:* A mountainous terrain model with moving crowds set on the sides of a road

• Three (3) simulated drones were deployed to follow three cyclists (one drone per cyclist).



(a) RGB image



(b) Ground truth segmentation

Performance metrics: mean IoU for the N number of frames





#### Multi-view Crowd Heatmap Fusion

• *Real world Dataset:* Multiple drones (2) are seeing a crowd existing in a flat terrain

(VML





#### **Multi-view Crowd Heatmap**



Fusion



#### Table 1: Experimental Results

| method                                 | m IoU ( $\pm std$ )     |
|----------------------------------------|-------------------------|
| single-view [4]                        | 0.2048                  |
| multi-view $a = 0.2, \lambda = 0$      | $0.2330(\pm 0.0780)$    |
| multi-view $a = 0.2, \lambda = 0.5$    | $0.2195(\pm 0.0875)$    |
| multi-view $a = 0.2, \lambda = 0.0005$ | <b>0.2565</b> (±0.0815) |
| multi-view $a = 0.5, \lambda = 0$      | $0.0366(\pm 0.0316)$    |
| multi-view $a = 0.5, \lambda = 0.5$    | $0.0385(\pm 0.0343)$    |
| multi-view $a = 0.5, \lambda = 0.0005$ | $0.0400(\pm 0.0323)$    |
| multi-view $a = 0.8, \lambda = 0$      | $0.0294(\pm 0.0271)$    |
| multi-view $a = 0.8, \lambda = 0.5$    | $0.0258(\pm 0.0265)$    |
| multi-view $a = 0.8, \lambda = 0.0005$ | $0.0284(\pm 0.0277)$    |
| multi-view $a = 1, \lambda = 0$        | 0.0198 (±0.0234)        |
| multi-view $a = 1, \lambda = 0.5$      | $0.0176(\pm 0.0231)$    |
| multi-view $a = 1, \lambda = 0.0005$   | $0.0210(\pm 0.0241)$    |

- The proposed method outperforms the single-view method
- When the exponential decay of the blended probability is conducted with smoother way (for λ smaller), the proposed method introduces the forgetting policy to the previous detections with more significance.
- The maximum of mean IoU value for probability blending with parameter  $\alpha$  = 0.2 and forgetting policy namely for  $\lambda$  = 0.0005





#### Thank you very much for your attention!

### More material in http://icarus.csd.auth.gr/cvml-web-lecture-series/

Contact: Prof. I. Pitas pitas@csd.auth.gr



36