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Deep semantic image
segmentation

Semantic image segmentation of a sports event [EVE2011].



Deep semantic image
segmentation

• Autonomous driving.

Semantic image segmentation for autonomous driving [COR2016].



Deep semantic image
segmentation

• Medical purposes.

Semantic dental Xray segmentation [TOR2014]. 



• An image domain 𝒳 must be segmented in 𝑁 different regions 

ℛ1, … , ℛ𝑁.

• The segmentation rule is a logical predicate of the form 𝑃(ℛ)

• Image segmentation partitions the set 𝒳 into the subsets ℛ𝑖, 𝑖
= 1,… ,𝑁, having the following properties:

• 𝒳 = 𝑖=1ڂ
𝑁 ℛ𝑖 ,

• ℛ𝑖 ∩ ℛ𝑗 = ∅, 𝑖 ≠ 𝑗,

• 𝑃 ℛ𝑖 = TRUE, 𝑖 = 1,… , 𝑁,

• 𝑃 ℛ𝑖 ∪ ℛ𝑗 = FALSE, 𝑖 ≠ 𝑗.
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Deep semantic image
segmentation

• Recent semantic image segmentation methods

classify each pixel of an input image to an object

class using DNNs.

• Dense prediction: DNN predictions are made at

pixel level.



Deep semantic image 
segmentation

• Fully convolutional network for semantic 
segmentation.

End-to-end CNN training for semantic image segmentation [LON2015]. 



Deep semantic image 
segmentation

• However, as the encoder radically reduces the

resolution of the input image the decoder fails to
produce fine-grained segmentations.

Coarse image segmentation [LON2015]. 
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Skip CNN layer connections [LON2015]. 
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Improved segmentation results with skip connections [LON2015]. 



Deep semantic image 
segmentation

U-Net network architecture [RON 2015]. 



Deep semantic image 
segmentation

Fully convolutional networks with CRFs [CHE2017]. 



Deep semantic image 
segmentation

Spatial Pyramid Pooling Encoder-Decoder Combined     [CHE2018]



Deep semantic image 
segmentation

• Encoder-decoder architectures can be very slow

due to the operations required by the convolution

layers.

• In this direction, atrous or dilated convolution has

been introduced as a replacement to the

convolution layer.

• Atrous convolution offers a wider field of view at

the same computational cost.



Deep semantic image 
segmentation

• The dilation rate defines a spacing between the

values in a convolving kernel.

[MOR2018]



a) ASPP (using dilated convolution): The context of a pixel (red box) is

the set of sparsely sampled pixels around it (blue and ochre boxes). b)

OCR: The context is a set of pixels residing in the object it belongs to.
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Learnable attention matrices can help

semantic segmentation by eliminating

spurious regions/noise [HUA2019] .

• Criss-cross attention mechanism

is a better alternative to regular

attention matrix for semantic

segmentation [HUA2019] .

• It adaptively captures contextual

information for each pixel on the

vertical and horizontal axes.



Joint 3D Scene Geometry and 
Semantics Estimation

Typical multitask networks have:

• Common input 𝐗.

• Common feature extraction operator 𝐅.

• 𝑛 concurrent task operators:

𝐓1, … , 𝐓𝑛, 𝑛 ≥ 2.

• The multitask network output is the set:

𝒯 = 𝐓1 𝐅 𝐗 ,… , 𝐓𝑛 𝐅 𝐗 .
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Crowd detection using
semantic image segmentation

• The crowd detection problem is effectively

approached using semantic image segmentation.

• If only two object classes are considered (i.e.,

crowd, no-crowd), semantic image segmentation

corresponds to crowd detection.



Crowd detection using
semantic image segmentation

Crowd detection as semantic image segmentation.



• The semantic image segmentation branch is trained

using the following loss function:

𝐽𝑠 = 𝐽𝑝 + 𝛼

𝑖=2

3

𝐽𝑎𝑖 ,

• 𝐽𝑝: principal segmentation loss.

• 𝐽𝑎2 , 𝐽𝑎3 : auxiliary loss for stage 2, 3 of the base

model, respectively.

• Both 𝐽𝑝, 𝐽𝑎𝑖 are standard softmax loss functions.

Crowd detection using
semantic image segmentation



Crowd detection using
semantic image segmentation

Crowd detection results on a UAV-captured video.



Semantic segmentation
for landing site detection

Landing site detection results on a synthetic image. 

Green pixels correspond to landing zones.

3D projection

OUTPUT : Safe Landing Areas
in Green Color

INPUT : 2D projection
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Q & A

Thank you very much for your attention!
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