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Introduction

* Transformers (“Attention is all you need”) [VAS2017]
were originally introduced to tackle natural language

processing (NLP) tasks:
« Machine translation (BERT [DEV2018])
« Text summarization (ROBERTA [LIU 2019])

* Question/answering systems (DISTILBERT [SANH2019])
 Document generation (GPT v3 [BR0O2020])
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https://transformer.huggingface.co/

Introduction C\ZML

« Recently, they have been applied in standard
computer vision tasks achieving state-of-the-art

results, e.qg., :

* Image recognition ([DOS2020])
» Object detection (JCAR2020])

« Segmentation ([YE2019])

« Over 150 papers were released in 2021.
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Introduction C\ZML

[1/4] Transformers vs RNNSs:

« Typically, RNNs (such as LSTMs and GRUs) work in a sequential
manner, processing one element at a time while keeping a “memory” of
all the previously seen elements.
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 These models suffer from exploding gradients when an input sequence
IS too long, and dependencies are really distant.

* _This sequential nature also makes them difficult to scale or parallelize.
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Introduction C\ZML

[2/4] Transformers vs RNNSs:
« In Transformers, there is no concept of time step regarding the input,
hence, they do not require the sequential data be processed in order.

* The entire sequence is processed simultaneously!
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* Allows for much more parallelization than RNNs and therefore reduced

. raining times.
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Introduction VML

[3/4] Transformers vs RNNSs:

Transformers reference window

LSTM and GRU reference window

Typicall RNN reference window

Example | Ag gliens entered our planetjand began to |c0|0nize earth a group of extraterrestials ...

sentence:

Hypothetical reference window of RNNs, LSTMSs and Transformers.

« Transformers, in theory, have an infinite window to reference from.
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Introduction

[4/4] Transformers vs RNNSs:

Challenges with RNNS:

9®

Struggles with Long range
dependencies

Gradient explosion

Large number of training cycles
Recurrence prevents parallel

computation
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Transformer Networks:

Facilitate Long range
dependencies

No gradient explosion

Fewer number of training cycles
No recurrence that facilitate

parallel computation



Attention Mechanism in NLP C\ZML

 Attention mechanisms let a model directly look at, and draw
from, the state at any earlier point in the sequence.

« Such a mechanism can access all previous states and weight
them according to some learned measure of relevancy to the

current element, providing sharper information about far-away
relevant tokens.

 RNNs combined with attention mechanisms led to large gains
In performance.
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Attention Mechanism in CV

[ITTI1998]
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Attention Mechanism

 Mimics the retrieval of a value v; € R? for a query q € R% based on a
k; € R? in a database.

Database
key, | value,
query key: | value.
T~ » | key vaiue, | ——*
" key, | value,
i Attention(q, ki, Vi) . Zi ¢(q1 ki)vi )
(qk/ dot product
ak; scaled dot product
where :¢(q, k;) =< Vd P

qWK; general dot product
Q”O el eliaence & kqwg + k;w; additive similarity.
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Attention Mechanism @ML

B+ ®+ B+ Attention = Z a;v;.
i
al a2 a3 a4
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kl k2 k3 k4
 The output is a linear combination of the values v; and the "weights” a

which are generated as a notion of similarity between the query q and
the keys Kk;.
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Transformer architecture VML

Scaled Dot-Product Attention Q ' Multi-Head Attention
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Typical architecture of a Transformer model [KHAN2020].
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Scaled dot-product attention C\ZML

* Inputs: X € R™¢Y € R™*4

« Goal: Enrich the representation of Y by integrating (“attending”) information
from X.
« Matrices:

* Query: Q = XW, , W, € R4
- Key: K =YWy ,W, € R34
+ Value: V=YW, ,W, € R

whereW, ,Wg ,Wy are linear transformations applied on the temporal
dimensions of the input sequence.

. 1
- Attention: A = Softmax (= QK")V.
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Multihead Scaled dot-product attention @ML

« Self-attention Is defined when X =Y (common case In the
transformer-encoder architecture), where QK is now a square
matrix of dimensions n X n.

* In the case of multi-head attention, we have N, number of
attention heads and we split the Wy, Wy, Wy matrices into Ny

matrices of dimensions d X i—h (d should be divisible by N;).
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Multihead Scaled dot-product attention @ML

* The attention of every head A,,,h = 1, ..., N;, Is defined as:
1
A; = Softmax (—

75 QhKrTl> Vi,

N —
g

Sh
Where Qh — Xth, Kh — YWKh, Vh — YWVh for h — 1, ""Nh'

 And the overall attention is defined as:
A= Concat(Al, Az, ,Ah)wO ,

where WO e R%*? s a linear projection matrix.
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Bottlenecks of Transformers ( VML

Self-attention constitutes a major efficiency bottleneck.

Memory and time complexity to compute the attention matrix
A, Is quadratic w.r.t the length of the sequence n.

* In particular, the computation of S, =
1 T : o d :
Softmax ( N QK ) requires multiplying two n X N matrices,

leading to an overall complexity of O(n?).

* Prohibitive to train Transformer models with long sequences
(e.g.,n = 2048).
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Efficient Transformers @ML

« Huge surge of proposed efficient Transformer variants
[KATH2020, BELT2020, KITAEV2020, WANG2020,

XIONG2021]

 Efficiency could refer to reducing either the memory footprint
or the computational cost, e.g., number of FLOPS.

 The goal of such models is to propose a way to approximate
the quadratic coast of the similarity matrix S;, by assuming
low-rank structure in the n X n matrix.

Attificial Intelligen
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Efficient Transformers @ML

* Linformer [WANG2020] is an efficient transformer model that
reduces complexity from O(n?) to O(n).

 The similarity matrix S;, can be approximated by a low-rank
matrix S, by introducing two linear projection matrices E,;, F;, €
R**" that serve to reduce the dimension of key and value
matrices from n to a lower dimension k.
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Efficient Transformers @ML

* The new attention Is defined as:

(a

Kh B
E,K,)T |( 2k
Ah — SOftmaX \Qh( \i;_h) / (Fth) .

- The n x n matrix S, has decomposed to the n x k matrix S,,.
Hence for small values of k(k «n) time and memory
consumption are reduced.
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