Abstract: Modeling flash floods in urban areas with complex topography is always challenging. Considering fine-scale hydrodynamic 2D shallow water model to perform simulations requires a lot of manual or semi-automatic data processing before being able to run simulations. This involves the transformation of high-resolution Digital Surface Model (Lidar) into a Digital Elevation Model that conserves the main hydraulic properties of the ground (culverts, weirs, barriers, etc) as well as accurate delineation of the streets and buildings, etc. In the context of the ExtremeXP project funded by the European Commission we assess the role of machine learning to improve the simulation and nowcasting (forecast with short term horizon) of flash flood events in the city of Nîmes in the South of France. First, we prepare all relevant datasets to design a fine scale 2D hydrodynamic model and then we calibrate it on several historical flood events. Once this model is calibrated and validated, we use it as a reference for conducting several scenarios of improvements using machine learning model. Two kinds of scenarios are analyzed. In the first kind lie all the machine learning techniques that would facilitate the design of the hydrodynamic model by either reducing the number of input data or reducing the necessary data transformation processes. The second kind of scenario consists in designing surrogates for the reference hydrodynamic model itself for nowcasting flood propagation during an event.

Lecturer Short CV: After 20 years in the satellite mission control segment, Jacques COVES activities are dedicated to Earth-Observation applications, specially hydrologic studies and systems. He is acting as project director and business developer in CS GROUP for all hydro related projects. 

CSGROUP_XtremXP_flash-flood-1

Video: Flash flood modeling and in urban areas using High Resolution hydrodynamic model and machine learning models