Huffman Encoding Tutorial Exercise 2

Exercise

Consider a source with alphabet A, consisting of the symbols $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with probabilities $\{0.5000,0.2143,0.1703,0.1154\}$ respectively. Suppose, also, that the conditional distribution of a sample \mathcal{F}_{n} given its previous sample \mathcal{F}_{n-1} is described by the following matrix:

$$
Q=\left[\begin{array}{llll}
0.6250 & 0.3750 & 0.3750 & 0.3750 \\
0.1875 & 0.3125 & 0.1875 & 0.1875 \\
0.1250 & 0.1875 & 0.3125 & 0.1250 \\
0.0625 & 0.1250 & 0.1250 & 0.3125
\end{array}\right],
$$

where element i, j specifies the conditional probability $q(i \mid j)$, which is the probability that sample \mathcal{F}_{n} is the $i^{\text {th }}$ symbol, given that \mathcal{F}_{n-1} is the $j^{\text {th }}$ symbol. The joint probability density function of every two samples is given by:

$$
p\left(f_{n-1}, f_{n}\right)=p\left(f_{n-1}\right) q\left(f_{n} \mid f_{n-1}\right)
$$

Apply Huffman encoding (using vector length $=2$) in order to produce the codebook and estimate the average and minimum bit rate per vector sample for this source.

