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Outline
• 1D convolutions

Linear & Cyclic 1D convolutions

Discrete Fourier Transform, Fast Fourier Transform

Winograd algorithm

• Linear & Cyclic 2D convolutions

• Applications in deep learning

Convolutional neural networks



Motivation
• Fast implementation of 1D and 2D digital filters

Image filtering

Image feature calculation

• Gabor filters

• Fast implementation of 1D and 2D correlation

Template matching

Correlation tracking

• Machine learning

Convolutional Neural Networks



Linear 1D convolution

• The one-dimensional (linear) convolution of:

• an input signal 𝑥 and

• a convolution kernel ℎ (filter finite impulse response) of length 𝑁:

𝑦 𝑘 = ℎ 𝑘 ∗ 𝑥 𝑘 = 

𝑖=0

𝑁−1

ℎ 𝑖 𝑥 𝑘 − 𝑖

• For a convolution kernel centered around 0 and 𝑁 = 2𝑣 +
1, it takes the form:

𝑦 𝑘 = ℎ 𝑘 ∗ 𝑥 𝑘 = 

𝑖=−𝑣

𝑣

ℎ 𝑖 𝑥 𝑘 − 𝑖



Linear 1D convolution -

Example

Image source: http://electricalacademia.com/signals-and-systems/example-of-discrete-time-graphical-convolution/



Linear 1D convolution -

Example

Image source: http://electricalacademia.com/signals-and-systems/example-of-discrete-time-graphical-convolution/



Linear 1D correlation
• Correlation of template ℎ and input signal 𝑥 𝑘 :

𝑟 𝑘 = 

𝑖=0

𝑁−1

ℎ 𝑖 𝑥 𝑘 + 𝑖

• Input signal is not flipped.

• It is used for template matching and for object tracking in

video.

• It is often confused with convolution: they are identical

only if h is centered at and is symmetric about i=0.



Cyclic 1D convolution

• One-dimensional cyclic convolution of length N , (𝑘)𝑁= 𝑘 𝑚𝑜𝑑 𝑁 :

𝑦 𝑘 = 𝑥 𝑘 ⊛ ℎ 𝑘 = 

𝑖=0

𝑁−1

ℎ 𝑖 𝑥(( (𝑘 − 𝑖)𝑁))

• Embedding linear convolution in a cyclic convolution 𝑦 𝑛 = 𝑥 𝑥 ⊗ ℎ 𝑛 of 

length 𝑁 ≥ 𝐿 +𝑀 − 1 and then performing a cyclic convolution of length 

N:

𝑦 𝑘 = 𝑥 𝑘 ⊛ ℎ 𝑘 = σ𝑖=0
𝑁−1 𝑥𝑁 𝑖 ℎ𝑛(( (𝑘 − 𝑖)𝑁))



Cyclic Convolution via 

DFT
Cyclic convolution can also be calculated using 1D DFT:

𝒚 = 𝐼𝐷𝐹𝑇(𝐷𝐹𝑇 𝒙 𝐷𝐹𝑇 𝒉 )



1D FFT

• There are a few algorithms to speed up the calculation of

DFT.

• The most well known is the radix-2 decimation-in-time

(DIT) Fast Fourier Transform (FFT) (Cooley-Tuckey).

1. The DFT of a sequence 𝑥(𝑛) of length 𝑁 is:

𝑋(𝑘) = 

𝑛=0

𝑁−1

𝑥(𝑛) 𝑒−
2𝜋𝑖
𝑁

𝑛𝑘

where 𝑘 is an integer ranging from 0 to 𝑁 − 1.



1D FFT
• radix-2 FFT breaks a length-N DFT into many size-2 DFTs called 

"butterfly" operations.

• There are log2N stages.



Z-transform

𝑋(𝑧) = 

𝑛=0

𝑁−1

𝑥(𝑛)𝑧−𝑛

The Z-transform of a signal (function) x(n) having domain [0,…,N] is given by:

The domain of Z-transform is the complex plane, since z is a complex number.
The following relation holds for the Z-transform:

𝑦(𝑛) = 𝑥(𝑛) ∗ ℎ(𝑛) ⇔ 𝑌(𝑧) = 𝑋(𝑧)𝐻(𝑧)



Cyclic convolution and

Z-transform

Where : (𝑘)𝑁 = 𝑘mod𝑁

)1mod( −Nz



Winograd algorithm

Fast 1D cyclic convolution with 

minimal  complexity

• The Winograd algorithm works on small tiles of the input image.

• The input tile and filter are transformed

• The outputs of the transform are multiplied together in an element-wise 

fashion

• The result is transformed back to obtain the outputs of the convolution.



Winograd algorithm

Fast 1D cyclic convolution with 

minimal  complexity
• Winograd convolution algorithms or fast 

filtering  algorithms:

𝑌 = 𝐂 𝐀𝐱⨂𝐁𝐡

• They require only 2𝑁 − 𝑣 multiplications in 

their middle vector product, thus having 

minimal complexity.

• 𝜈:  number of cyclotomic polynomial 

factors of polynomial 𝑧𝑁 − 1 over the 

rational numbers 𝑄.

• GEneral Matrix Multiplication (GEMM) BLAS

or CUBLAS routines can be used.



Linear and cyclic 2D 

convolutions

• Two-dimensional linear convolution with convolutional kernel ℎ of size 

𝑁1 × 𝑁2 is given by:

𝑦 𝑘1, 𝑘2 = ℎ 𝑘1, 𝑘2 ∗∗ 𝑥 𝑘1, 𝑘2 =

𝑖1

𝑁1



𝑖2

𝑁2

ℎ 𝑖1, 𝑖2 𝑥(𝑘1 − 𝑖1, 𝑘2 − 𝑖2)

• Its two-dimensional cyclic convolution counterpart of support 𝑁1 × 𝑁2
is defined as:

𝑦 𝑘1, 𝑘2 = ℎ 𝑘1, 𝑘2 ⊛⊛𝑥 𝑘1, 𝑘2 =

𝑖1

𝑁1



𝑖2

𝑁2

ℎ 𝑖1, 𝑖2 𝑥( 𝑘1 − 𝑖1 𝑁1 , 𝑘2 − 𝑖2 𝑁2)



2D Convolution -

Example
• With Padding



Applications

• Convolutional neural networks

• Signal processing
Signal filtering

Signal restoration

Signal deconvolution

• Signal analysis
Time delay estimation

Distance calculation (e.g., sonar)

1D template matching



Convolutional Neural Networks

• Two step architecture:

• First layers with sparse NN connections: convolutions.

• Fully connected final layers.

• Need for fast convolution calculations.

Convergence of machine learning and signal 
processing processing



Convolutional Layer

• For a convolutional layer 𝑙 with an activation function 𝑓𝑙(∙) , 

multiple incoming features 𝑑𝑖𝑛 and one single output feature 𝑜.

For RGB images

Multiple input features to single feature 𝒐 transformation

𝑦 𝑙 (𝑖, 𝑗, 𝑜) = 𝑓𝑙 𝑏(𝑙) +

𝑟=1

𝑑𝑖𝑛



𝑘1=−𝑞1

𝑞1
(𝑙)



𝑘2=−𝑞2

𝑞2
(𝑙)

𝑤(𝑙) 𝑘1, 𝑘2, 𝑟, 𝑜 𝑥(𝑙) 𝑖 − 𝑘1, 𝑗 − 𝑘2, 𝑟

Convolutional Layer Activation Volume (3D tensor) 

𝑎𝑖𝑗
𝑙
(𝑜) = 𝑓𝑙 𝑏 𝑙 (𝑜) +

𝑟=1

𝑑𝑖𝑛

𝑾 𝑙 (𝑟, 𝑜) ∗ 𝑿𝑖𝑗
𝑙
(𝑟) 𝑨 𝑙 = 𝑎𝑖𝑗

𝑙
𝑜 : 𝑖 = 1, . . , 𝑛 𝑙 , 𝑗 = 1, . . , 𝑚 𝑙 , 𝑜 = 1,… , 𝑑𝑜𝑢𝑡

where𝑨 𝑙 is the activation volume for the convolutional layer 𝑙,𝑾 𝑙 (𝑟, 𝑜) is a 2D slice of the convolutional kernel

𝑾(𝑙) ∈ ℝℎ1×ℎ2×𝑑𝑖𝑛×𝑑𝑜𝑢𝑡 for input feature 𝑟 and output feature 𝑜 , 𝑏 𝑙 (𝑜) a scalar bias and

𝑿𝑖𝑗
𝑙
(𝑟)a region of input feature 𝑟 centered at 𝑖, 𝑗 𝑇, e.g. 𝑿 1 (1) the R channel of an image 𝑑𝑖𝑛 = 𝐶 = 3.



Deep Learning Frameworks

Image Source: Heehoon Kim, Hyoungwook Nam, Wookeun Jung, and Jaejin Le - Performance Analysis of CNN Frameworks for GPUs



Deep Learning Frameworks
• All 5 frameworks work with cuDNN as backend.

• cuDNN unfortunately not open source

• cuDNN supports FFT and Winograd

Image Source: Heehoon Kim, Hyoungwook Nam, Wookeun Jung, and Jaejin Le - Performance Analysis of CNN Frameworks for GPUs



The Neon story

• Developed by Nervana in 2015

• Written in Python and C

• Doesn’t support Windows

• Uses MKL for CPU (highly optimized by Intel)

• Supports CUDA for GPU

• Known mostly to be the first to implement Winograd faster than 

others.



Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas
pitas@csd.auth.gr

www.multidrone.eu


