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Motion Estimation 

summary



Two dimensional motion 
and apparent motion

• 2D motion or projected motion is 

the perspective projection of the 

3D motion on the image plane.

• Object point 𝐏 at time 𝑡 moves to 

point 𝐏′ at 𝑡′ and its perspective 

projection in the image plane from 

𝐩 to 𝐩′.



Two dimensional motion 
and apparent motion

• Optical flow vector: the derivative of the correspondence

vector: [𝜐𝑥 , 𝜐𝑦]
𝑇= [ Τ𝑑𝑥 𝑑𝑡 , Τ𝑑𝑦 𝑑𝑡]𝑇.

• It describes the spatiotemporal changes of luminance

𝑓𝑎 𝑥, 𝑦, 𝑡 .

• Motion speed: magnitude of the motion vector.

• The correspondence or optical flow vectors determine the

apparent motion.



Two dimensional motion 
and apparent motion

a) Motion field; b) motion speed.



Two dimensional motion 
and apparent motion

Global optical flow generated by a) camera pan and b) zoom.



Two dimensional motion 
and apparent motion
• The optical flow field may be different from the 2D

displacement field:

• When the image has insufficient spatial information, the actual

motion field is not observable.

• Illumination changes alter luminance value of a static object.



Three-dimensional 
motion models
• 3D solid object motion can be described by the affine

transformation:

𝐗′ = 𝐑𝐗 + 𝐓,

where 𝐓 is a 3 × 1 translation vector:

𝐓 =
𝑇𝑋
𝑇𝑌
𝑇𝑍

and 𝐑 is a 3 × 3 rotation matrix (various forms).



Three-dimensional 
motion models
• In Cartesian coordinates, 𝐑 can be described:

• either by the Euler rotation angles about the three coordinate

axes 𝑋, 𝑌, 𝑍.

• or by a rotation axis and a rotation angle about this axis.

• The matrices describing the clockwise rotation around each

axis in the three dimensional space, are given by:

𝐑 = 𝐑𝑧𝐑𝑌𝐑𝑋.

• Their order does matter.

• 𝐑 is orthonormal, satisfying 𝐑𝑇 = 𝐑−1 and 𝑑𝑒𝑡 𝐑 = ±1.



Three-dimensional 
motion models

Euler rotation angles.

𝐑𝑋 =
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

,

𝐑𝑌 =
cos 𝜓 0 sin𝜓
0 1 0

−sin𝜓 0 cos𝜓
,

𝐑𝑍 =
cos𝜑 − sin𝜑 0
sin𝜑 cos 𝜑 0
0 0 1

.



Two-dimensional motion 
models
• In many occasions, it is difficult to distinguish between

camera and visualized object motion.

• We consider that the camera remains static and the scene objects

move:

𝑋′

𝑌′

𝑍′
=

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

𝑋
𝑌
𝑍

+
𝑇𝑋
𝑇𝑌
𝑇𝑍

.

• From the 12 relevant parameters, only 6 are independent (3

rotation parameters and the 3 translation vector components).



Two-dimensional motion 
models
• The new image point coordinates must be calculated as

projections of the world coordinates.

• Analytical expression of the new coordinates 𝑥′, 𝑦′ 𝑇 on the

image plane as a function of the old position 𝑥, 𝑦 and

depth 𝑍:

𝑥′ =
𝑟11𝑥+𝑟12𝑦+𝑟13𝑓 𝑍+𝑇𝑋𝑓

𝑟31𝑥+𝑟32𝑦+𝑟33𝑓 𝑍+𝑇𝑍𝑓
, 𝑦′ =

𝑟21𝑥+𝑟22𝑦+𝑟23𝑓 𝑍+𝑇𝑋𝑓

𝑟31𝑥+𝑟32𝑦+𝑟33𝑓 𝑍+𝑇𝑍𝑓
.



Two-dimensional motion 
models
• 2D affine mapping transformation: it describes 2D rotation,

translation and scaling.

• It can be used for 2D image registration.

Subtractive radiography.



Two-dimensional motion 
models
• 2D affine mapping transformation for image mosaicking.



Estimation of two-
dimensional 
correspondence vectors

Forward and backward 2D motion estimation.



Estimation of two-
dimensional 
correspondence vectors

Object occlusion (right) and de-occlusion (left).



Estimation of two-
dimensional 
correspondence vectors

• Aperture problem: only 

local spatial information 

(within the camera 

aperture) is used for 

motion estimation.



Quality metrics for 
motion estimation
• Peak Signal to Noise Ratio (PSNR): Metric for testing the

quality of motion estimators’ results, measured in 𝑑𝐵:

𝑃𝑆𝑁𝑅 = 10 log10
𝑁×𝑀

σ 𝑓 𝑥,𝑦,𝑡 −𝑓 𝑥+𝑑𝑥 𝑥,𝑦 , 𝑦+𝑑𝑦 𝑥,𝑦 , 𝑡−1 2.

• 𝑁 ×𝑀: video frame size in pixels.

• Video luminance scaled in the range 0,1 .

• 𝑑𝑥, 𝑑𝑦: the displacement components resulting from motion

estimation at pixel 𝐩 = 𝑥, 𝑦 𝑇.



Quality metrics for 
motion estimation
• Denominator: the Displaced Frame Difference (DFD)

between the target frame 𝑡 and the reference frame 𝑡 − 1.

• Motion field entropy:

𝐻 = −σ𝑑𝑥 𝑝 𝑑𝑥 log2 𝑝 𝑑𝑥 − σ𝑑𝑦 𝑝 𝑑𝑦 log2 𝑝 𝑑𝑦 .

• 𝑝 𝑑𝑥 , 𝑝 𝑑𝑦 : the probability density function (relative

frequency) of the horizontal and vertical components of the

displacement vector 𝐝 𝑥, 𝑦 = 𝑑𝑥 𝑥, 𝑦 , 𝑑𝑦 𝑥, 𝑦 𝑇.



Block matching
• Block displacement 𝐝 can be estimated by minimizing the

displaced section difference for selecting the optimal

displacement 𝐝 = 𝑑𝑥, 𝑑𝑦 𝑇:

min
𝑑𝑥,𝑑𝑦

𝐸 𝐝 = σ𝑛1
σ𝑛2 𝑓 𝑛1, 𝑛2, 𝑡 − 𝑓 𝑛1 + 𝑑𝑥, 𝑛2 + 𝑑𝑦, 𝑡 − 1 .

• 𝑛1, 𝑛2 are pixel coordinates.

• 𝐿1, 𝐿2, 𝐿𝑝 norms can be used for displaced frame difference

estimation.



Block matching

Sparse and dense motion fields.



One dimensional search

• A two-step method for

searching for the minimum of

𝐸 𝐝 along the horizontal and

vertical directions:

• 1st step. Search along the

horizontal direction.

• 2nd step. Based on the results

of step 1, the minimum is

searched for along the vertical

direction.



Phase correlation
• Relative image blocks displacement is calculated using a

normalized cross-correlation function calculated on the 2D

spatial or Fourier domain.

• Cross-correlation between two video frames of size𝑁1 × 𝑁2
at times 𝑡 and 𝑡 − 1:

𝑟𝑡,𝑡−1 𝑛1, 𝑛2 =

σ𝑘1=0
𝑁1−1σ𝑘2=0

𝑁2−1 𝑓 𝑘1, 𝑘2, 𝑡 𝑓(𝑛1 + 𝑘1, 𝑛2 + 𝑘2, 𝑡 − 1) =

𝑓 𝑛1, 𝑛2, 𝑡 ∗∗ 𝑓 −𝑛1, −𝑛2, 𝑡 − 1 .

** denotes a 2D convolution.



Optical flow equation 
methods
• The continuous spatiotemporal video luminance 𝑓𝑎 𝑥, 𝑦, 𝑡 ,

not 𝑓𝑎 𝑥, 𝑦, 𝑡 does not change along the object motion

trajectory.

• For 𝐱𝑡 = 𝑥, 𝑦, 𝑡 𝑇 on motion trajectory, the total derivative

𝑑𝑓𝑎 𝐱𝑡

𝑑𝑡
= 0 leads to optical flow equation (OFE):

𝜕𝑓𝑎 𝐱𝑡

𝜕𝑥
𝜐𝑥 𝐱, 𝑡 +

𝜕𝑓𝑎 𝐱𝑡

𝜕𝑦
𝜐𝑦 𝐱, 𝑡 +

𝜕𝑓𝑎 𝐱𝑡

𝜕𝑡
= 0.

• 𝐱 = 𝑥, 𝑦 , 𝐱𝑡 = 𝑥, 𝑦, 𝑡 𝑇 , 𝜐𝑥 𝐱, 𝑡 = Τ𝑑𝑥 𝑑𝑡 , 𝜐𝑦 𝐱, 𝑡 = Τ𝑑𝑦 𝑑𝑡.



Optical flow equation 
methods



OFE smoothing methods

• They are based on the assumption that object motion is

smooth, so that correspondence motion fields change

smoothly in space.

• Small spatial gradients.

• Horn-Schunck method: searches for a motion field that

both satisfies the OFE and has small spatial optical flow

vector changes.



OFE smoothing methods
• Satisfaction of OFE requires minimization of the squared

error of:

𝐸1 𝐯 𝐱, 𝑡 = 𝛁𝑓𝛼 𝐱𝑡 ∙ 𝐯𝛵 𝐱, 𝑡 +
𝜕𝑓𝑎 𝐱𝑡

𝜕𝑡
.

• Spatial changes in the velocity vector field can be

quantified by:

𝐸2
2 𝐯 𝐱, 𝑡 = 𝛁𝜐𝑥 𝐱, 𝑡 2 + 𝛁𝜐𝑦 𝐱, 𝑡

2
=

=
𝜕𝜐𝑥

𝜕𝑥

2
+

𝜕𝜐𝑥

𝜕𝑦

2
+

𝜕𝜐𝑦

𝜕𝑥

2

+
𝜕𝜐𝑦

𝜕𝑦

2

.



OFE smoothing methods

• OFE smoothing minimizes 𝐸1
2 𝐯 , 𝐸2

2 𝐯 wrt the velocity

vector components 𝜐𝑥 , 𝜐𝑦 at each point 𝐱 = 𝑥, 𝑦 𝑇:

min
𝐯 𝐱,𝑡

𝒜 𝐸1
2 𝐯 + 𝜆𝐸2

2 𝐯 𝑑𝑥.

𝜆: chosen heuristically parameter controling motion field

smoothing.



Neural Optical Flow estimation 

• Optical flow estimation by using Convolutional Neural Networks.

• High accuracy, dense flow field, fast implementations.

• Supervised methods:

• Highest accuracy;

• Ground truth for real world video sequences is required.

• Unsupervised methods:

• Lower, but comparable accuracy;

• No need for optical flow ground truth.



Neural Optical Flow estimation 

Flownet: Supervised NN optical flow estimation.

• Foundation stone for almost all later supervised networks.

• FlowNetS (Simple):

• A single network branch.

• Refinement module upscales conv6’s output using outputs

from various intermediate stages.

• Two consecutive input frames, concatenated in the channel

dimension.



Neural Optical Flow estimation 

FlowNetC (Correlation):

• two separate branches extracting features for each input image;

• they are later merged into one branch by correlating the

extracted feature maps:

𝑟
𝑓1𝑓2

𝑛1, 𝑛2 = 𝑓1 𝑛1, 𝑛2 ∗∗ 𝑓2 −𝑛1, −𝑛2 .

• 𝑓1, 𝑓2: 2𝑘 + 1 × (2𝑘 + 1) 2D feature maps.

[8]



Neural Optical Flow estimation 

[DOS2015]



Object detection and 
Tracking

• Motion estimation estimates motion vectors on entire video

frames.

• Object tracking relies on:

• Object detection on a video frame.

• Tracking of this object (essentially estimating its motion) over

subsequent video frames.



Object Detection and 
Tracking

• Problem statement:

• To detect an object (e.g. human face) that appear in each video 

frame and localize its Region-Of-Interest (ROI).

• To track the detected object over the video frames. 

1st frame 6th frame 11th frame 16th frame



Object detection and 
Tracking

• Tracking associates each detected object ROI in the 

current video frame with one in the next video frame.

• Therefore, we can describe the object ROI trajectory in a

video segment in (𝑥, 𝑦, 𝑡) coordinates.



Object  Detection and 
Tracking
• Tracking failure may occur, i.e.,

• after occlusions;

• when the tracker drifts to the background or to another object.

• In such cases, object re-detection is employed.

• However, if any of the detected objects coincides with any

of the objects already being tracked, the former ones are

retained, while the latter ones are discarded from any

further processing.



Object Detection and 
Tracking

• Periodic object re-detection can be applied to account 

for new faces entering the camera's field-of-view.

• Forward and backward tracking, when the entire video 

is available.
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Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas

pitas@csd.auth.gr


