

### Motion Estimation summary

Prof. Ioannis Pitas, S. Papadopoulos Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 3.3



- 2D motion or projected motion is the perspective projection of the 3D motion on the image plane.
- Object point P at time t moves to point P' at t' and its perspective projection in the image plane from p to p'.









- **Optical flow** vector: the derivative of the correspondence vector:  $[v_x, v_y]^T = [dx/dt, dy/dt]^T$ .
- It describes the spatiotemporal changes of luminance  $f_a(x, y, t)$ .
- Motion speed: magnitude of the motion vector.
- The correspondence or optical flow vectors determine the apparent motion.









#### a) Motion field; b) motion speed.





|   | CARARARARARARA                                                                                                  | 2 | 1    | 8 | ۴ | Ť | î | î | 7 | 1 | 1  | 1  | 1 | 1  | 1  | , . | 7  | 7   | A. | 22  | 2   |
|---|-----------------------------------------------------------------------------------------------------------------|---|------|---|---|---|---|---|---|---|----|----|---|----|----|-----|----|-----|----|-----|-----|
|   | CARARARARARARAR                                                                                                 | 4 | 4    | 2 | * | Ť | 1 | 1 | 7 | 7 | 7  | 1  | 7 | 7  | 7  | 1   | 7  | ,7  | 2  | 21  | 21  |
|   | SARARARARARARA                                                                                                  | 5 | -    |   |   |   |   | ÷ | 7 | * | 7  | 2  | 7 | 7  | 1  | , , | ,7 | 2   | 2  | 21  | 21  |
|   | SARARRARAR ARARRA                                                                                               |   |      |   |   |   |   |   | 7 | * | *  | 7  | 7 | 7  | 7  | 2.  | 2  | 2   | 2  | 2   | 20  |
|   | CARARARARARARAR                                                                                                 |   |      |   |   |   |   |   |   | * | *  | 7  | 7 | 7  | ,  | 7.  | 2  | 2   | 2. | 2   | 2   |
|   | MARKEKEKERERE                                                                                                   |   |      |   |   |   |   |   |   | * | *  | 7  | 7 | ,7 | 7  | , , | 7  | 2   | 2  | 2   | r   |
|   | MARKKKKKKKKKKK                                                                                                  |   |      |   |   |   |   |   |   |   |    | 7  | 7 | 7  | 7  | л,  | A. | 2   | 2. | 2,  | 200 |
|   | MARARARA                                                                                                        |   |      |   |   |   |   |   |   |   |    |    |   |    | 14 |     | 2  | a   | 2. | 20  | 20  |
|   | shaaaaa                                                                                                         |   |      |   |   |   |   |   |   |   |    |    |   |    |    |     | 2  | 2   | 2. | 20  | 20  |
|   |                                                                                                                 |   |      |   |   |   |   |   |   |   |    |    |   |    |    |     | 27 | -   | -  |     | -   |
|   |                                                                                                                 |   |      |   |   |   |   |   |   |   |    |    |   |    |    | -   | 4  |     | -  | -   | -   |
|   |                                                                                                                 |   |      |   |   |   |   |   |   |   |    |    |   |    |    |     | ÷. | +   | -  |     | -   |
|   |                                                                                                                 |   |      |   |   |   |   |   |   |   |    |    |   |    | *  | ÷ • | ÷  | ÷.  |    |     |     |
|   |                                                                                                                 |   |      |   |   |   |   |   |   |   |    |    |   | -> | -> | -   |    | ->- |    | -+- |     |
|   |                                                                                                                 |   |      |   |   |   |   |   |   |   |    |    |   | 3  | -> | ->- |    |     |    |     | 1   |
|   |                                                                                                                 |   |      |   |   |   |   |   |   |   |    | зd | - | 4  | -  | 4.  | -3 | -3- | 3. | ->- |     |
|   |                                                                                                                 |   |      |   |   |   |   |   |   |   |    | ¥  | 3 | 3  | 3  | 3   | 5  | 3   | 3  | 57  | - 4 |
|   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                         | 4 | 4    | 4 |   |   |   |   |   |   | Ŀ. | ы  | 3 | 5  | 3  | 3   | 5  | 3   | 3  | 33  | 1   |
|   | <i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>                                                                    | 1 | đ    | 1 | 4 | 4 | 4 | 4 | 4 | 4 | ¥  | ъ  | 2 | 5  | 5  | 3   | 5  | 5   | 3  | 44  | 1   |
|   |                                                                                                                 | 1 | ž    | I | 4 | 4 | ÷ | 4 |   |   | ¥  | 2  | 3 | 5  | 5  | 3   | 9  | 5   | 5  | 5   | 1   |
| ŝ | - CEREERE C                                                                                                     | 1 | i    | i | 4 | 4 | Ł | Ł | 4 | 3 | ¥  | 2  | 5 | 5  | 5  | 5   | 5  | 3   | 3  | 5   | 10  |
|   | - vvvvvvv v                                                                                                     | 4 | i    | 1 | 4 | 4 | 1 | 1 | 4 | 3 | 1  | 2  | Ň | 1  | 1  | 5   | 5  | 3   | 3  | 5   | 10  |
| 2 | S-ceeses a                                                                                                      | 4 | i    | 1 | 4 | 1 | Ţ | 1 | 4 | 5 | 5  | 5  | 1 | 1  | 5  | 1   | 5  | 5   | 3  | 14  | 10  |
|   | the second se |   | 1000 | - |   | - | - | - | - | - | -  | -  |   | -  |    |     |    |     |    |     |     |

Global optical flow generated by a) camera pan and b) zoom.



- The optical flow field may be different from the 2D displacement field:
  - When the image has insufficient spatial information, the actual motion field is not observable.
  - Illumination changes alter luminance value of a static object.



### Three-dimensional motion models



 3D solid object motion can be described by the affine transformation:

 $\mathbf{X}' = \mathbf{R}\mathbf{X} + \mathbf{T},$ 

 $\mathbf{T} = \begin{bmatrix} T_X \\ T_Y \\ T_Z \end{bmatrix}$ 

where **T** is a  $3 \times 1$  translation vector:

and **R** is a  $3 \times 3$  rotation matrix (various forms).



## Three-dimensional motion models



- In Cartesian coordinates, **R** can be described:
  - either by the Euler rotation angles about the three coordinate axes *X*, *Y*, *Z*.
  - or by a rotation axis and a rotation angle about this axis.
- The matrices describing the clockwise rotation around each axis in the three dimensional space, are given by:

$$\mathbf{R} = \mathbf{R}_{Z}\mathbf{R}_{Y}\mathbf{R}_{X}.$$

- Their order does matter.
- **R** is orthonormal, satisfying  $\mathbf{R}^T = \mathbf{R}^{-1}$  and  $det(\mathbf{R}) = \pm 1$ .





- In many occasions, it is difficult to distinguish between camera and visualized object motion.
  - We consider that the camera remains static and the scene objects move:

$$\begin{bmatrix} X' \\ Y' \\ Z' \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + \begin{bmatrix} T_X \\ T_Y \\ T_Z \end{bmatrix}.$$

From the 12 relevant parameters, only 6 are independent (3 rotation parameters and the 3 translation vector components).



- The new image point coordinates must be calculated as projections of the world coordinates.
- Analytical expression of the new coordinates [x', y']<sup>T</sup> on the image plane as a function of the old position [x, y] and depth Z:

 $x' = \frac{(r_{11}x + r_{12}y + r_{13}f)Z + T_X f}{(r_{31}x + r_{32}y + r_{33}f)Z + T_Z f'}$ 

 $y' = \frac{(r_{21}x + r_{22}y + r_{23}f)Z + T_X f}{(r_{31}x + r_{32}y + r_{33}f)Z + T_Z f}.$ 





• It can be used for 2D image registration.



VML

Subtractive radiography.





• 2D affine mapping transformation for image mosaicking.



#### Estimation of twodimensional correspondence vectors

Frame t-1

 $(\alpha', \nu')$ 



Frame t

(x, y)

Frame t+1

 $d_{v}$ 

(x',y')





#### Estimation of twodimensional correspondence vectors





Object occlusion (right) and de-occlusion (left).



#### Estimation of twodimensional correspondence vectors

 Aperture problem: only local spatial information (within the camera aperture) is used for motion estimation.



### Quality metrics for motion estimation



• **Peak Signal to Noise Ratio (PSNR)**: Metric for testing the quality of motion estimators' results, measured in *dB*:

 $PSNR = 10 \log_{10} \frac{N \times M}{\sum [f(x,y,t) - f(x + dx(x,y), y + dy(x,y), t - 1)]^2}.$ 

- $N \times M$ : video frame size in pixels.
- Video luminance scaled in the range [0,1].
- dx, dy: the displacement components resulting from motion estimation at pixel  $\mathbf{p} = [x, y]^T$ .



## Quality metrics for motion estimation



- Denominator: the **Displaced Frame Difference (DFD)** between the target frame t and the reference frame t 1.
- Motion field entropy:

 $H = -\sum_{dx} p(dx) \log_2 p(dx) - \sum_{dy} p(dy) \log_2 p(dy).$ 

• p(dx), p(dy): the probability density function (relative frequency) of the horizontal and vertical components of the displacement vector  $\mathbf{d}(x, y) = [dx(x, y), dy(x, y)]^T$ .



#### **Block matching**



• Block displacement **d** can be estimated by minimizing the displaced section difference for selecting the optimal displacement  $\mathbf{d} = [dx, dy]^T$ :

 $\min_{dx,dy} E(\mathbf{d}) = \sum_{n_1} \sum_{n_2} \|f(n_1, n_2, t) - f(n_1 + dx, n_2 + dy, t - 1)\|.$ 

- $n_1, n_2$  are pixel coordinates.
- $L_1, L_2, L_p$  norms can be used for displaced frame difference estimation.









#### Sparse and dense motion fields.

#### **One dimensional search**





- A two-step method for searching for the minimum of *E*(d) along the horizontal and vertical directions:
  - 1st step. Search along the horizontal direction.
  - 2nd step. Based on the results of step 1, the minimum is searched for along the vertical direction.

#### **Phase correlation**



- Relative image blocks displacement is calculated using a normalized cross-correlation function calculated on the 2D spatial or Fourier domain.
- **Cross-correlation** between two video frames of size  $N_1 \times N_2$ at times t and t - 1:

 $r_{t,t-1}(n_1,n_2) =$ 

$$\begin{split} \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} f(k_1,k_2,t) f(n_1+k_1,n_2+k_2,t-1) &= \\ f(n_1,n_2,t) * f(-n_1,-n_2,t-1). \end{split}$$



## Optical flow equation methods



- The continuous spatiotemporal video luminance  $f_a(x, y, t)$ , not  $f_a(x, y, t)$  does not change along the object motion trajectory.
- For  $\mathbf{x}_t = [x, y, t]^T$  on motion trajectory, the total derivative  $\frac{df_a(\mathbf{x}_t)}{dt} = 0$  leads to **optical flow equation (OFE)**:

$$\frac{\partial f_a(\mathbf{x}_t)}{\partial x} v_x(\mathbf{x}, t) + \frac{\partial f_a(\mathbf{x}_t)}{\partial y} v_y(\mathbf{x}, t) + \frac{\partial f_a(\mathbf{x}_t)}{\partial t} = 0.$$
  
$$\mathbf{x} = [x, y], \ \mathbf{x}_t = [x, y, t]^T, \ v_x(\mathbf{x}, t) = dx/dt, \ v_y(\mathbf{x}, t) = dy/dt.$$



### Optical flow equation methods





### **OFE smoothing methods**



- They are based on the assumption that object motion is smooth, so that correspondence motion fields change smoothly in space.
  - Small spatial gradients.
- Horn-Schunck method: searches for a motion field that both satisfies the OFE and has small spatial optical flow vector changes.



### **OFE smoothing methods**



**VML** 

$$E_1(\mathbf{v}(\mathbf{x},t)) = \mathbf{\nabla} f_\alpha(\mathbf{x}_t) \cdot \mathbf{v}^T(\mathbf{x},t) + \frac{\partial f_\alpha(\mathbf{x}_t)}{\partial t}$$

 Spatial changes in the velocity vector field can be quantified by:

$$E_2^2(\mathbf{v}(\mathbf{x},t)) = \|\nabla v_x(\mathbf{x},t)\|^2 + \|\nabla v_y(\mathbf{x},t)\|^2 = \left(\frac{\partial v_x}{\partial x}\right)^2 + \left(\frac{\partial v_x}{\partial y}\right)^2 + \left(\frac{\partial v_y}{\partial x}\right)^2 + \left(\frac{\partial v_y}{\partial y}\right)^2.$$



### **OFE smoothing methods**



• OFE smoothing minimizes  $E_1^2(\mathbf{v}), E_2^2(\mathbf{v})$  wrt the velocity vector components  $(v_x, v_y)$  at each point  $\mathbf{x} = [x, y]^T$ :

$$\min_{\mathbf{v}(\mathbf{x},t)} \int_{\mathcal{A}} \left( E_1^2(\mathbf{v}) + \lambda E_2^2(\mathbf{v}) \right) dx.$$

 $\lambda$ : chosen heuristically parameter controling motion field

smoothing.



### Neural Optical Flow estimation

- Optical flow estimation by using Convolutional Neural Networks.
- High accuracy, dense flow field, fast implementations.
- Supervised methods:
  - Highest accuracy;
  - Ground truth for real world video sequences is required.
- Unsupervised methods:
  - Lower, but comparable accuracy;
  - No need for optical flow ground truth.

### Neural Optical Flow estimation **CML**

*Flownet*: Supervised NN optical flow estimation.

- Foundation stone for almost all later supervised networks.
- FlowNetS (Simple):
  - A single network branch.
  - Refinement module upscales conv6's output using outputs from various intermediate stages.
    - Two consecutive input frames, concatenated in the channel dimension.



### Neural Optical Flow estimation **CML**

FlowNetC (**C**orrelation):

- two separate branches extracting features for each input image;
- they are later merged into one branch by correlating the extracted feature maps:

 $r_{f_1f_2}(n_1, n_2) = f_1(n_1, n_2) * f_2(-n_1, -n_2).$ 

•  $f_1, f_2: (2k + 1) \times (2k + 1)$  2D feature maps.







### Object detection and Tracking



- Motion estimation estimates motion vectors on entire video frames.
- Object tracking relies on:
  - Object detection on a video frame.
  - Tracking of this object (essentially estimating its motion) over subsequent video frames.



### **Object Detection and Tracking**



- Problem statement:
  - To detect an object (e.g. human face) that appear in each video frame and localize its *Region-Of-Interest (ROI)*.
  - To track the detected object over the video frames.



### Object detection and Tracking



• Tracking associates each detected object ROI in the current video frame with one in the next video frame.

Therefore, we can describe the object ROI trajectory in a video segment in (x, y, t) coordinates.



# **Object Detection and Tracking**



- Tracking failure may occur, i.e.,
  - after occlusions;
  - when the tracker drifts to the background or to another object.
- In such cases, object re-detection is employed.
- However, if any of the detected objects coincides with any of the objects already being tracked, the former ones are retained, while the latter ones are discarded from any further processing.



# **Object Detection and Tracking**



• Periodic object re-detection can be applied to account for new faces entering the camera's field-of-view.

• Forward and backward tracking, when the entire video is available.



#### References



**[DOS2015]** Dosovitskiy, Alexey, et al. "Flownet: Learning optical flow with convolutional networks." *Proceedings of the IEEE international conference on computer vision*. 2015.

**[ILG2017]** Ilg, Eddy, et al. "Flownet 2.0: Evolution of optical flow estimation with deep networks." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2017.

[HUI2018] Hui, Tak-Wai, Xiaoou Tang, and Chen Change Loy. "Liteflownet: A lightweight convolutional neural network for optical flow estimation." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2018.
[RAN2017] Ranjan, Anurag, and Michael J. Black. "Optical flow estimation using a spatial pyramid

network." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

**[ZHI2018]** Yin, Zhichao, and Jianping Shi. "Geonet: Unsupervised learning of dense depth, optical flow and camera pose." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2018.

**[RAN2019]** Ranjan, Anurag, et al. "Competitive collaboration: Joint unsupervised learning of depth, camera motion, optical flow and motion segmentation." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2019.

[ZOU2018] Zou, Yuliang, Zelun Luo, and Jia-Bin Huang. "Df-net: Unsupervised joint learning of depth and flow using cross-task consistency." *Proceedings of the European Conference on Computer Vision (ECCV)*. 2018.

[ZHOU2019] Zhu, Alex Zihao, et al. "Unsupervised event-based learning of optical flow, depth, and egomotion." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2019.



#### Q & A

#### Thank you very much for your attention!

#### Contact: Prof. I. Pitas pitas@csd.auth.gr

