Introduction to Machine CML Learning summary

Prof. Ioannis Pitas Aristotle University of Thessaloniki pitas@csd.auth.gr www.aiia.csd.auth.gr Version 3.5

- Supervised learning
 - Classification/recognition/identification, Identity verification
 - Regression, Object detection
- Unsupervised learning
 - Clustering
 - Dimensionality reduction, data retrieval
- Self-supervised learning
- Semi-supervised learning
 - Label propagation
- Artificial Neural Networks
- Adversarial Machine Learning
- Generative Machine Learning
- Temporal Machine learning (RNN)
- Continual Learning
- Reinforcement Learning
- Adaptive learning

General notations:

- $\mathbf{x} \in \mathbb{R}^n$: ML model input feature vector.
- $\mathbf{y} \in \mathbb{R}^m$: target label vector.
- $\hat{\mathbf{y}} \in \mathbb{R}^m$: predicted (estimated) ML model output vector.
- *N*: number of examples in the dataset \mathcal{D} .
- *n*: input vector dimensionality
- *m*: output dimensionality (e.g. number of classes).
- **ML model**: a learnable function typically of the form $\hat{y} = f(x; \theta)$.
 - Its structure may be predefined.
 - Its parameter vector $\boldsymbol{\theta}$ is typically learned through training, by optimizing an error function $J(\mathbf{x}, \boldsymbol{\theta})$.

Classification/Recognition/ Identification

- Given a set of classes $C = \{C_i, i = 1, ..., m\}$ and a sample $\mathbf{x} \in \mathbb{R}^n$, the ML model $\hat{\mathbf{y}} = f(\mathbf{x}; \mathbf{\theta})$ predicts a class label vector $\hat{\mathbf{y}} \in [0, 1]^m$ for input sample \mathbf{x} , where $\mathbf{\theta}$ are the learnable model parameters.
- Essentially, a probabilistic distribution $P(\hat{\mathbf{y}}|\mathbf{x})$ is computed.
- Interpretation: likelihood of the given sample x belonging to each class C_i .
 - Single-target classification:
 - classes C_i , i = 1, ..., m are mutually exclusive: $\|\hat{\mathbf{y}}\|_1 = 1$.
- Multi-target classification:
 - classes C_i , i = 1, ..., m are not mutually exclusive : $||\hat{\mathbf{y}}||_1 \ge 1$.

Supervised Learning

• A sufficient large training sample set \mathcal{D} is required for Supervised Learning (regression, classification):

 $\mathcal{D} = \{ (\mathbf{x}_i, \mathbf{y}_i), i = 1, \dots, N \}.$

- $\mathbf{x}_i \in \mathbb{R}^n$: *n*-dimensional input (feature) vector of the *i*-th training sample.
- \mathbf{y}_i : its target label (output).
- Target vector y can be:
 - real-valued vector: $\mathbf{y} \in [0, 1]^m$, $\mathbf{y} \in \mathbb{R}^m$;
 - binary-valued vector $\mathbf{y} \in \{0,1\}^m$ or even categorical.

Classification/Recognition/ Identification

- **Training**: Given N pairs of training samples $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i), i = 1, ..., N\}$, where $\mathbf{x}_i \in \mathbb{R}^n$ and $\mathbf{y}_i \in [0,1]^m$, estimate $\boldsymbol{\theta}$ by minimizing a loss function: $\min_{\boldsymbol{\theta}} J(\mathbf{y}, \hat{\mathbf{y}})$.
- Inference/testing: Given N_t pairs of testing examples $\mathcal{D}_t = \{(\mathbf{x}_i, \mathbf{y}_i), i = 1, ..., N_t\}$, where $\mathbf{x}_i \in \mathbb{R}^n$ and $\mathbf{y}_i \in [0,1]^m$, compute (predict) $\hat{\mathbf{y}}_i$ and calculate a performance metric, e.g., classification accuracy.

Classification/Recognition/ Identification

Optimal step between training and testing:

- Validation: Given N_v pairs of testing examples (different from either training or testing examples) $\mathcal{D}_v = \{(\mathbf{x}_i, \mathbf{y}_i), i = 1, ..., N_v\}$, where $\mathbf{x}_i \in \mathbb{R}^n$ and $\mathbf{y}_i \in [0,1]^m$, compute (predict) $\hat{\mathbf{y}}_i$ and validate using a performance metric.
- *k-fold cross-validation* (optional):
- Use only a percentage $(100 \frac{100}{k})\%$, of the data for training and the rest for validation $(\frac{100}{k}\%$, e.g., 20%). Repeat it *k* times, until all data used for training and testing).
- Example: for 5-fold validation, 5 rounds each using:
 - 80% of the data for training and 20% for testing.

Artificial Intelligence & Information Analysis Lab

Classification

Two-class classification:

- Two class (m = 2) and multiple class (m > 2) classification.
- Example: Face detection (two classes).

- Two class (binary) classification
 - One (binary) hypothesis to be tested:

 $\mathcal{H}_1: \mathbf{x} \in \mathcal{C}_1, \qquad \mathcal{H}_2: \mathbf{x} \in \mathcal{C}_2.$

Classification

Multiclass Classification (m > 2):

- Multiple (m > 2) hypotheses testing: choose a winner class out of m classes.
- Binary hypothesis testing:
 - One class against all: *m* binary hypotheses.
 - one must be proven true.

hypotheses.

• Pair-wise class comparisons: m(m-1)/2 binary

Face

Recognition/identification

Problem statement:

- To identify a face identity
- Input for training: several facial ROIs per person
- Input for inference: a facial ROI
- Inference output: the face id
- Supervised learning
- Applications:

Biometrics Surveillance applications Video analytics

Autoencoders

Given a sample $\mathbf{x} \in \mathbb{R}^n$ and a function $\mathbf{y} = f(\mathbf{x}; \mathbf{\theta})$, the model output \mathbf{y} should be equal to the model input \mathbf{x} :

• **Training**: Given *N* pairs of training examples $\mathcal{D} = \{\mathbf{x}_i, i = 1, ..., N\}$, where $\mathbf{x}_i = \mathbf{y}_i \in \mathbb{R}^n$, estimate $\mathbf{\theta}$ by minimizing a loss function: $\min_{\mathbf{n}} J(\mathbf{x}, \hat{\mathbf{y}})$.

Artificial Intelligence & Information Analysis Lab

Autoencoder structure.

Image segmentation

Given a region class label set $C = \{C_i, i = 1, ..., m\}$, an image $\mathbf{x} \in \mathbb{R}^n$ must be segmented in *m* regions resulting in a segmentation map $\mathbf{y} \in \mathbb{R}^{n \times m}$.

- the ML model $\hat{\mathbf{y}} = f(\mathbf{x}; \boldsymbol{\theta})$ predicts a segmentation map $\hat{\mathbf{y}} \in \mathbb{R}^{n \times m}$, where a class label vector $\hat{\mathbf{y}}_j \in \mathbb{R}^m$ is assigned to each image pixel j = 1, ..., n of the input image sample \mathbf{x} minimizing the error $\min_{\mathbf{y}} J(\mathbf{y}, \hat{\mathbf{y}})$.
- Pixel-level classification.

predict

Person Bicycle Background

6D object pose regression

- A ML model receives the object image and directly regresses its pose.
- Only a set of pose-annotated object pictures are needed for ML model training.

Multi-task Machine Learning

- The same ML model $y = f(x; \theta)$ is optimized to learn performing multiple tasks, e.g.:
 - Object recognition
 - Region-of-Interest (bounding box) regression
 - Region segmentation
 - Depth regression.
 - Output: $\mathbf{y} = [\mathbf{y}_1^T | \dots | \mathbf{y}_M^T]^T$ for *M* different tasks.
 - Optimization of a joint cost function: $\min_{\boldsymbol{\theta}} J(\mathbf{y}, \hat{\mathbf{y}}) = \alpha_1 J_1(\mathbf{y}, \hat{\mathbf{y}}) + \dots + \alpha_M J_M(\mathbf{y}, \hat{\mathbf{y}}).$

- Object detection = classification + localization:
- Find what is in a picture as well as where it is.

Classification

Object Detection

Classification + Localization

CAT

CAT

CAT, DOG, DUCK

Object Detection

Artificial Intelligence & Information Analysis Lab

Figure: http://cs231n.stanford.edu/slides/2016/winter1516_lecture8.pdf

- Supervised learning
 - Classification/recognition/identification, Identity verification
 - Regression, Object detection
- Unsupervised learning
 - Clustering
 - Dimensionality reduction, data retrieval
- Self-supervised learning
- Semi-supervised learning
 - Label propagation
- Artificial Neural Networks
- Adversarial Machine Learning
- Generative Machine Learning
- Temporal Machine learning (RNN)
- Continual Learning
- Reinforcement Learning
- Adaptive learning

Unsupervised Learning

 In unsupervised learning, the ML model is provided with samples containing exclusively input feature vectors, without neither labels nor any information about the specific desired output:

$$\mathcal{D} = \{\mathbf{x}_i, i = 1, 2, \dots, N\}$$

- $\mathbf{x} \in \mathbb{R}^n$.
- Unsupervised learning-based models are used for discovering the underlying structure of the data.

Clustering

- Input: A predefined number of clusters $C = \{C_i, i = 1, 2, ..., m\}$ and a set of unlabeled samples $D = \{\mathbf{x}_i, i = 1, 2, ..., N\} \mathbf{x}_i \in \mathbb{R}^n$.
 - Number of clusters *m* may be unknown.
- **Output:** Sample set $\mathcal{D} = \{\mathbf{x}_i, i = 1, 2, ..., N\}$ partition to *m* clusters $\mathcal{C}_i, i = 1, ..., m$
 - Cluster samples are similar and dissimilar to the samples of other clusters based on similarity/distance metric || · ||.
- Basically, clustering involves unlabeled data according to feature similarities.

Face clustering

Problem statement:

- To cluster facial images
- Input: many facial ROIs
- Output: facial image clusters
- Unsupervised learning
- Applications:

Biometrics Surveillance applications Video analytics

Dimensionality Reduction

- Example: Human posture visualization.
- Dimensionality reduction from $\mathbf{p} \in \mathbb{R}^{HW}$ to $\mathbf{y} \in \mathbb{R}^2$

Artificial Intelligence & Information Analysis Lab

Dimensionality Reduction

- Multidimensional scaling.
- Principal Component Analysis.
- Linear Discriminant analysis.
- Independent Component Analysis.
- Autoencoders.

Artificial Intelligenchttp://slideplayer.com/slide/3415344/12/images/6/Content-based+Image+Retrieval.jpg Information Analysis Lab **VML**

Person re-identification

Definition

- Refers to the problem of associating/matching images of the same person taken:
 - from different cameras or
 - from the same camera in different occasions (e.g., night day)
- It can be solved as a data retrieval problem.

Example

- Supervised learning
 - Classification/recognition/identification, Identity verification
 - Regression, Object detection
- Unsupervised learning
 - Clustering
 - Dimensionality reduction, data retrieval
- Self-supervised learning
- Semi-supervised learning
 - Label propagation
- Artificial Neural Networks
- Adversarial Machine Learning
- Generative Machine Learning
- Temporal Machine learning (RNN)
- Continual Learning
- Reinforcement Learning
- Adaptive learning

Self-Supervised Learning

- Self-supervised learning resembles supervised learning.
- It relies on pairs of input-outputs, $(\mathbf{x}_i, \mathbf{y}_i)$ for ML model training.
- However, it does not require an explicit form of target labels
 y_i.
- Instead, the necessary supervisory information is extracted from the input feature structure and correlations.

- Supervised learning
 - Classification/recognition/identification, Identity verification
 - Regression, Object detection
- Unsupervised learning
 - Clustering
 - Dimensionality reduction, data retrieval
- Self-supervised learning
- Semi-supervised learning
 - Label propagation
- Artificial Neural Networks
- Adversarial Machine Learning
- Generative Machine Learning
- Temporal Machine learning (RNN)
- Continual Learning
- Reinforcement Learning
- Adaptive learning

Semi-Supervised Learning

Semi-supervised learning:

- Combination of supervised and unsupervised learning.
- It relies on the existence of a large amount of training data, whose minority contains output information (data labels).
- Training dataset \mathcal{D} consists of:
 - a set of N_1 labeled training examples, $\mathcal{D}_1 = \{(\mathbf{x}_i, \mathbf{y}_i), i = 1, ..., N_1\}$.
 - a set of N_2 unlabeled examples, $\mathcal{D}_2 = \{\mathbf{x}_i, i = 1, ..., N_2\}$, where $N_1 \ll N_2$:

 $\mathcal{D}=\mathcal{D}_1 \cup \mathcal{D}_2.$

It is particularly useful for exploiting data structure (geometry) information.

Facial label propagation

Problem statement:

- To transfer labels from labeled to unlabeled facial images
- Input: a) labeled facial ROIs,
 b) unlabeled facial ROIs
- Output: facial image labels
- Semi-supervised learning
- Applications:

Biometrics Surveillance applications Video analytics

Artificial Intelligence & Information Analysis Lab

- Supervised learning
 - Classification/recognition/identification, Identity verification
 - Regression, Object detection
- Unsupervised learning
 - Clustering
 - Dimensionality reduction, data retrieval
- Self-supervised learning
- Semi-supervised learning
 - Label propagation
- Artificial Neural Networks
- Adversarial Machine Learning
- Generative Machine Learning
- Temporal Machine learning (RNN)
- Continual Learning
- Reinforcement Learning
- Adaptive learning

Artificial Neural Networks

- Artificial neurons are mathematical models loosely inspired by their biological counterparts.
- Incoming signals: $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$, $x_i \in \mathbb{R}$.
- Synaptic weights: $\mathbf{w} = [w_1, w_2, ..., w_n]^T$, $w_i \in \mathbb{R}$.
- Synaptic integration: $Z = \sum_{i=1}^{N} w_i x_i = \mathbf{w}^T \mathbf{x}$.
- Output nonlinearity.
- ANNs have a layered structure:

•Each layer consists of artificial neurons.

•They learn a function $\hat{\mathbf{y}} = f(\mathbf{x}; \mathbf{\theta})$ during training.

Artificial Intelligence & Information Analysis Lab X_{2}

threshold

Deep Neural Networks Definition

- Deep Neural Networks (DNNs) have a count of layers (depth) $L \ge 3$.
- There are multiple hidden layers with regard to the MLP reference model.
- Typically, first layers are convolutional, latter ones are fully connected (CNNs).

VML

Deep Neural Network with L = 4

- Supervised learning
 - Classification/recognition/identification, Identity verification
 - Regression, Object detection
- Unsupervised learning
 - Clustering
 - Dimensionality reduction, data retrieval
- Self-supervised learning
- Semi-supervised learning
 - Label propagation
- Artificial Neural Networks
- Adversarial Machine Learning
- Generative Machine Learning
- Temporal Machine learning (RNN)
- Continual Learning
- Reinforcement Learning
- Adaptive learning

Adversarial Machine Learning

Adversarial machine learning:

- Given a class label set $C = \{C_i, i = 1, ..., m\}$ and a trained ML model $\hat{\mathbf{y}} = f(\mathbf{x}; \mathbf{\theta}), \hat{\mathbf{y}} \in [0,1]^m$
- find a perturbation \mathbf{p} , so that a perturbed test sample instance $\mathbf{x}_p = \mathbf{x} + \mathbf{p}$ (adversarial sample) is wrongly classified by the ML model as: $\hat{\mathbf{y}}_p = f(\mathbf{x}_p; \mathbf{\theta})$, where $\hat{\mathbf{y}}_p \neq \hat{\mathbf{y}}$.
 - *ML training set augmentation*: during the training process apart from using real samples \mathbf{x}_i , i = 1, ..., N in the training set, we also include their perturbed instances \mathbf{x}_{p_i} , so that both \mathbf{x}_i and \mathbf{x}_{p_i} are correctly classified.
- Adversarial training works as a regularization technique, in order to derive a more robust ML model.

Artificial Intelligence & Information Analysis Lab

- Supervised learning
 - Classification/recognition/identification, Identity verification
 - Regression, Object detection
- Unsupervised learning
 - Clustering
 - Dimensionality reduction, data retrieval
- Self-supervised learning
- Semi-supervised learning
 - Label propagation
- Artificial Neural Networks
- Adversarial Machine Learning
- Generative Machine Learning
- Temporal Machine learning (RNN)
- Continual Learning
- Reinforcement Learning
- Adaptive learning

- Supervised learning
 - Classification/recognition/identification, Identity verification
 - Regression, Object detection
- Unsupervised learning
 - Clustering
 - Dimensionality reduction, data retrieval
- Self-supervised learning
- Semi-supervised learning
 - Label propagation
- Artificial Neural Networks
- Adversarial Machine Learning
- Generative Machine Learning
- Temporal Machine learning (RNN)
- Continual Learning
- Reinforcement Learning
- Adaptive learning

Recurrent Neural Networks

- An RNN typically processes temporal information:
 - signals/ time sequences.
- It consists of recurrent neurons.
- A recurrent neuron takes into consideration the stored information from the past inputs(hidden state).
- \mathbf{x}_t : input instance.
- \mathbf{h}_{t-1} : hidden state.
- φ : activation function.
- $\hat{\mathbf{y}}_t$: the output.
- t: is representing the time.

Artificial Intelligence & Information Analysis Lab

Fig.5 Recurrent artificial neuron

- Supervised learning
 - Classification/recognition/identification, Identity verification
 - Regression, Object detection
- Unsupervised learning
 - Clustering
 - Dimensionality reduction, data retrieval
- Self-supervised learning
- Semi-supervised learning
 - Label propagation
- Artificial Neural Networks
- Adversarial Machine Learning
- Generative Machine Learning
- Temporal Machine learning (RNN)
- Continual Learning
- Reinforcement Learning
- Adaptive learning

Continual Learning

- Continual learning (Incremental Learning, Life-long Learning):
 - The training example set $D_t = \{(\mathbf{x}_i, \mathbf{y}_i), i = 1, 2, ..., N\}$ changes over time t
 - with the addition of new samples
 - deletion of some old samples.
 - The ML model is incrementally trained (NOT from scratch);
 - The learning takes place, whenever new examples emerge;
 - It adjusts what has been learned according to the new examples;
 - It does not assume the availability of a sufficient training set, before the learning process starts.
 - Catastrophic forgetting.

- Supervised learning
 - Classification/recognition/identification, Identity verification
 - Regression, Object detection
- Unsupervised learning
 - Clustering
 - Dimensionality reduction, data retrieval
- Self-supervised learning
- Semi-supervised learning
 - Label propagation
- Artificial Neural Networks
- Adversarial Machine Learning
- Generative Machine Learning
- Temporal Machine learning (RNN)
- Continual Learning
- Reinforcement Learning
- Adaptive learning

Reinforcement Learning

- Reinforcement Learning: interaction scheme between an ML agent and his environment, in order to maximize some notion of cumulative rewards.
- Given a finite set of states $S = \{s_i, i = 1, 2, ..., N_s\}$, a finite set of actions $A = \{a_i, i = 1, 2, ..., N_a\}$, a reward function $R_a(s_i, s_j)$ and a probability function $P_a(s_j, r | s_i, a)$, where r is a reward, the goal of an RL model is to find a policy that maximizes a cumulative reward signal.
- Experience replay: Online reinforcement learning, based on remembering and reusing past experiences.

Reinforcement Learning

Artificial Intelligence & Information Analysis Lab

- Supervised learning
 - Classification/recognition/identification, Identity verification
 - Regression, Object detection
- Unsupervised learning
 - Clustering
 - Dimensionality reduction, data retrieval
- Self-supervised learning
- Semi-supervised learning
 - Label propagation
- Artificial Neural Networks
- Adversarial Machine Learning
- Generative Machine Learning
- Temporal Machine learning (RNN)
- Continual Learning
- Reinforcement Learning
- Adaptive learning

Adaptive learning

• Knowledge Distillation:

• The input/output pairs of a trained teacher ML model (typically large and heavyweight) are employed for training a student ML model (typically smaller and initially untrained).

Domain adaptation

- Adaptation of an ML model trained on one task-specific source domain (dataset) to a different target domain (dataset).
- The data of the two domains typically follow different pdfs.
- The model/data are adapted, so that task-specific knowledge is maintained in the different domains.
- Transfer learning
 - An already pre-trained ML model is re-trained using new data to improve performance in the new (and old) domain/task of interest.

Adaptive learning

- Bio-inspired learning:
 - Bio-inspiration for fundamental learning mechanisms, e.g., based on memory or synaptic plasticity.
- Curiosity-driven learning:
 - Identification of important information to incorporate new knowledge and reduce uncertainty.
- Activation Pattern Analysis
 - Determining ML model behavior/response on novel test data.

Artificial Intelligence & Information Analysis Lab

Adaptive learning

- Federated learning/Collaborative learning
 - Decentralized ML model training across multiple nodes with local data samples only, without data exchange across nodes.

• Ensemble Learning

 The analysis results from multiple different DNN models are weighed and combined to reach a more accurate aggregate prediction.

[BIS2006] C.M. Bishop, Pattern recognition and machine learning, Springer, 2006.
[GOD2016] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016
[THE2003] S. Theodoridis, K. Koutroumbas, Pattern Recognition, Elsevier, 2003.

Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas pitas@csd.auth.gr

