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Introduction to Machine Learning C\ZML

« Supervised learning
« Classification/recognition/identification, ldentity verification
* Regression, Object detection
 Unsupervised learning
Clustering
« Dimensionality reduction, data retrieval
«  Self-supervised learning
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» Label propagation
«  Artificial Neural Networks
Adversarial Machine Learning
«  Generative Machine Learning
Temporal Machine learning (RNN)
«  Continual Learning
 Reinforcement Learning
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| | Artificial Intelligence &
Information Analysis Lab



Introduction to Machine C\ZML
Learning

General notations:

 x € R"™: ML model input feature vector.

 y € R™: target label vector.

« y € R™: predicted (estimated) ML model output vector.
 N: number of examples in the dataset D.

e n:input vector dimensionality

 m: output dimensionality (e.g. number of classes).

« ML model: a learnable function typically of the form y = f(x; 0).
« |ts structure may be predefined.
« |ts parameter vector 0 is typically learned through training, by
optimizing an error function J(x, 0).
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Classification/Recognition/ C\ZML
ldentification

« Given a set of classes C = {G;,i = 1, ..., m} and a sample x € R", the ML
model §y = f(x;0) predicts a class label vector § € [0,1]™ for input
sample x, where 0 are the learnable model parameters.

« Essentially, a probabillistic distribution P(y|x) is computed.
« Interpretation: likelihood of the given sample x belonging to each class C;.

« . Single-target classification:

« classes G;,i = 1, ..., m are mutually exclusive: ||y]|; = 1.
Multi-target classification:

» classesC;,i = 1,...,m are not mutually exclusive : ||y||, = 1.
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Supervised Learning C\ZML

A sufficient large training sample set D is required for Supervised
Learning (regression, classification):

D = {(Xi,yi),i = 1, ,N}

* X; € R": n—-dimensional input (feature) vector of the i-th training sample.
« y;: Its target label (output).
Target vector y can be:
« real-valued vector:y € [0,1]™,y € R™;
« binary-valued vectory € {0,1}'"" or even categorical.
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Classification/Recognition/ C\ZML
ldentification

 Training: Given N pairs of training samples D = {(x;,y;),i =1,...,N},
where x; € R®™ and y; € [0,1]™, estimate 6 by minimizing a loss
function: r%in J(y,9).

* Inference/testing: Given N; pairs of testing examples D; = {(X;,y;),i =
1,...,N;}, where x; € R" and y; € [0,1]™, compute (predict) ¥; and
calculate a performance metric, e.d., classification accuracy.
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Classification/Recognition/ C\ZML
ldentification

Optimal step between training and testing:

 Validation: Given N, pairs of testing examples (different from either
training or testing examples) D, = {(x;,y;),i = 1,...,N,}, where x; € R"
and y; € [0,1]™, compute (predict) y; and validate using a performance
metric.

« Kk-fold cross-validation (optional):

 Use only a percentage (100 — @)%, of the data for training and the rest
k

for validation (% %, e.g., 20%). Repeat it k times, until all data used for

training and testing).
« Example: for 5-fold validation, 5 rounds each using:

« 80% of the data for training and 20% for testing.
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Classification C\ZML

Two-class classification:
* Two class (m = 2) and multiple class (m > 2) classification.

* Example: Face detection (two classes).

* Two class (binary) classification

* One (binary) hypothesis to be tested:
:7'[1: XECl, }[2: X € Cz.
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Classification (VML

Multiclass Classification (m > 2):

« Multiple (m > 2) hypotheses testing: choose a winner class
out of m classes.

 Binary hypothesis testing:

* One class against all: m binary hypotheses.
®* one must be proven true.

» Pair-wise class comparisons: m(m—1)/2 binary
hypotheses
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Face
Recognition/identification

Problem statement:

« To identify a face identity
« Input for training: several facial ROIls per person
* Input for inference: a facial ROI
* Inference output: the face id

“\‘ <+

Sandra
Bullock

« Supervised learning
« . Applications:

Biometrics

Surveillance applications
Video analytics

i Who is he?
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Autoencoders @ML

Given a sample x € R" and a function y = f(x; 0), the model output y should be

equal to the model input x:

 Training: Given N pairs of training examples D = {x;,i =1,...,N}, where x; =
y; € R", estimate 0 by minimizing a loss function: mein](x, V).

____________________________________________________

_____________________________________________________

Input Layer

Output Layer

____________________________________________________

Decoder

O | | O Artificial Intelligence & Autoencoder structure.
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Image segmentation C\ZML

Given a region class label set ¢ = {C;,i =1,..,m}, an image x € R"™ must be

segmented in m regions resulting in a segmentation map y € R™*™,

« the ML model § = f(x; 0) predicts a segmentation map ¥ € R™*™, where a class
label vector §; € R™ is assigned to each image pixel j =1, ...,n of the input
Image sample x minimizing the error min J(v, ).

« Pixel-level classification.

Person
Bicycle
Background
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6D object pose regression @ML

 Object pose: 3 3D object translation and 3 3D rotation
parameters vs camera coordinate system.

A ML model receives the object image and directly regresses
Its pose.

* Only a set of pose-annotated object pictures are needed for
ML model training.
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Multi-task Machine Learning @ML

 The same ML model y = f(x;0) Is optimized to learn

performing multiple tasks, e.g.:
Object recognition
Region-of-Interest (bounding box) regression
Region segmentation
Depth regression.

e Output:y = [y!]...]lyL,]" for M different tasks.

« Optimization of a joint cost function:
mein](y, V)= 1(y,9) + -+ ay Iny.9).
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Qo

ODbject Detection

* Object detection = classification + localization:

* Find what is in a picture as well as where it is.
Classification

+ Localization Object Detection

Classification

CAT CAT CAT, DOG, DUCK

Artificial Intelligence & Figure: http://cs231n.stanford.edu/slides/2016/winter1516_lecture8.pdf
Information Analysis Lab
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Unsupervised Learning C\ZML

 In unsupervised learning, the ML model is provided with samples
containing exclusively input feature vectors, without neither labels nor any
Information about the specific desired output:

D={;i=12,..,N}
« x€eR"
« Unsupervised learning-based models are used for discovering the
underlying structure of the data.
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Clustering VML

* Input: A predefined number of clusters C = {C;,i = 1, 2, ..., m} and a set of
unlabeled samples D = {x;,i = 1,2, ..., N} x; € R™.

* Number of clusters m may be unknown.
« OQOutput: Sample set D = {x;,i = 1,2, ..., N} partition to m clusters C;,i = 1, ...,m
« Cluster samples are similar and dissimilar to the samples of other clusters based on

similarity/distance metric || -l

« Basically, clustering involves unlabeled data according to feature similarities.
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Face clustering

Problem statement:

To cluster facial images
Input: many facial ROIs
Output: facial image clusters

Unsupervised learning
Applications:

Biometrics

Surveillance applications
Video analytics
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Dimensionality Reduction

® Example: Human posture visualization.
® Dimensionality reduction from p € RHW to y € R?

W
=) H] A — HH" 0 o commmmmms
Binary human Posture image Posture vector
body image of fixed size p € RHW
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Dimensionality Reduction

9®

* Multidimensional scaling.

* Principal Component Analysis. :

* Linear Discriminant analysis.
* Independent Component Analysis.é
* Autoencoders. '
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Input Layer

Output Layer



Data Retrieval

9®

Content-based Image Retrieval

Given a query image, try to find visually similar
images from an image database

Artificial Intelligendaii://slideplayer.com/slide/3415344/12/images/6/Content-based+Image+Retrieval.jpg
Information Analysis Lab
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Person re-identification @ML

Definition

« Refers to the problem of
associating/matching images
of the same person taken:
« from different cameras or
« from the same camera in different

occasions (e.g., night day)

It can be solved as a data

retrieval problem.

Artificial Intelligence &
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Example
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Self-Supervised Learning C\ZML

« Self-supervised learning resembles supervised learning.

* It relies on pairs of Input-outputs, (x;,y;) for ML model
training.

 However, it does not require an explicit form of target labels
yi.

* Instead, the necessary supervisory information is extracted
from the input feature structure and correlations.

|| Artificial Intelligenc
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Semi-Supervised Learning C\ZML

Semi-supervised learning:

« Combination of supervised and unsupervised learning.

* |t relies on the existence of a large amount of training data, whose minority
contains output information (data labels).

« Training dataset D consists of:
« asetof N; labeled training examples, D; = {(x;,y;),i =1, ...,N; }.
« asetof N, unlabeled examples, D, = {x;,i = 1, ...,N,}., where N; < N,:

D —_ D]_UDz.

« |tis particularly useful for exploiting data structure (geometry) information.
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Facial label propagation

Problem statement:

- To transfer labels from labeled to unlabeled
facial images

* Input: a) labeled facial ROls,
b) unlabeled facial ROIs
« Output: facial image labels

Sandra
Bullock

«.Semi-supervised learning
« Applications:
Biometrics

Surveillance applications
Video analytics
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Artificial Neural Networks @ML

Artificial neurons are mathematical models loosely inspired by their biological
counterparts.

Incoming signals: x = [xq, x5, ..., x,,]7, x; € R.

Synaptic weights: w = [wy, wy, ..., wy, |7, w; ER.

.. . ] N . T

« Synaptic integration: Z = X,_, w;x; = W X.

o Output nonlinearity. L
threshold

o ANNSs have a layered structure: 33

«Each layer consists of artificial neurons.

«They learn a function ¥ = f(Xx; 0) during training.
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Deep Neural Networks C\ZML

Definition

* Deep Neural Networks (DNNs) have a count of layers (depth)
L=3. S—

* There are multiple hidden layers
with regard to the MLP reference
model.

= Typically, first layers are

convolutional, latter ones are fully

connected (CNNSs).
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Adversarial Machine Learning @ML

Adversarial machine learning:

« Given a class label set ¢ ={¢;,i =1,...,m} and a trained ML model ¥ = f(x;0),¥y
€ [0,1]™

« find a perturbation p, so that a perturbed test sample instance x, =x
+ p (adversarial sample) is wrongly classified by the ML model as: y,

= f(x,;0), where §,+ ¥.

« ML training set augmentation: during the training process apart from using real
samples x;,i=1,...,N In the training set, we also include their perturbed
Instances Xp ., SO that both x; and Xp. are correctly classified.

« Adversarial training works as a regularization technique, in order to derive a
more robust ML model.
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Recurrent Neural Networks @ML

* An RNN typically processes temporal information:
« signals/ time sequences.

* |t consists of recurrent neurons.

* A recurrent neuron takes into consideration the stored information
from the past inputs(hidden state).

X;. Input instance.

h;_,: hidden state.

@ . activation function.

V. the output.

t: IS representing the time.

. Fig.5 Recurrent artificial neuron
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Continual Learning @ML

« Continual learning (Incremental Learning, Life-long Learning):

« The training example set D, = {(x;,y;),i = 1,2, ..., N} changes over time ¢t
« with the addition of new samples
« deletion of some old samples.

« The ML model is incrementally trained (NOT from scratch);

 The learning takes place, whenever new examples emerge;

« [t adjusts what has been learned according to the new examples;

* |t does not assume the availability of a sufficient training set, before
the learning process starts.

« Catastrophic forgetting.
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Reinforcement Learning @ML

« Reinforcement Learning: interaction scheme between an ML agent and
his environment, In order to maximize some notion of cumulative
rewards.

« Given a finite set of states § ={s;,i = 1,2,...,N,}, a finite set of actions A
={a;,i =12,..,N;}, a reward function R,(s;,s;) and a probability function

P.(sj,|s;,a), where r is a reward, the goal of an RL model is to find a policy
that maximizes a cumulative reward signal.

« Experience replay: Online reinforcement learning, based on
remembering and reusing past experiences.
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Reinforcement Learning
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Adaptive learning VML

« Knowledge Distillation:
« The input/output pairs of a trained teacher ML model (typically large and
heavyweight) are employed for training a student ML model (typically smaller and
initially untrained).

 Domain adaptation

« Adaptation of an ML model trained on one task-specific source domain (dataset)
to a different target domain (dataset).

 The data of the two domains typically follow different pdfs.

« The model/data are adapted, so that task-specific knowledge is maintained in the
different domains.

 Transfer learning

« An already pre-trained ML model is re-trained using new data to improve
performance in the new (and old) domain/task of interest.
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Adaptive learning @ML

* Bio-inspired learning:
« Bio-inspiration for fundamental learning mechanisms, e.g., based on
memory or synaptic plasticity.

e Curiosity-driven learning:

 ldentification of important information to incorporate new knowledge
and reduce uncertainty.

 Activation Pattern Analysis
« Determining ML model behavior/response on novel test data.
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Adaptive learning @ML

* Federated learning/Collaborative learning

« Decentralized ML model training across multiple nodes with local
data samples only, without data exchange across nodes.

 Ensemble Learning

« The analysis results from multiple different DNN models are weighed
and combined to reach a more accurate aggregate prediction.
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Thank you very much for your attention!
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