
P. Giannakeris, P. Bassia, Prof. Ioannis Pitas

Aristotle University of Thessaloniki

pitas@csd.auth.gr

www.aiia.csd.auth.gr
Version 2.4

2D Convolution Algorithms

Summary

Outline

• 2D linear systems

• 2D convolutions
Discrete-time 2D Systems

Linear & Cyclic 2D convolutions

2D Discrete Fourier Transform, 2D Fast Fourier Transform

• Other convolution algorithms
Winograd algorithm

Block methods

• Applications in Machine Learning
Convolutional neural networks

2D Discrete-Time

Systems
• Transformation of a 2D discrete-time input signal 𝑥(𝑛1, 𝑛2) into a 2D

discrete-time output signal 𝑦(𝑛1, 𝑛2).

𝑦(𝑛1, 𝑛2) = 𝑇[𝑥(𝑛1, 𝑛2)]

2D Discrete-Time

Systems - Properties
• Linearity

𝑇 𝑎𝑥1 + 𝑏𝑥2 = 𝑎𝑇[𝑥1]+𝑏𝑇[𝑥2]

• Shift-Invariant

𝑦(𝑛1, 𝑛2) = 𝑇[𝑥(𝑛1, 𝑛2)] ⇒

𝑦(𝑛1 −𝑚1, 𝑛2 −𝑚2) = 𝑇[𝑥(𝑛1 −𝑚1, 𝑛2 −𝑚2)]

2D Discrete-Time

Systems - Properties

• A linear shift invariant system is described by a 2D convolution of

input x with a convolutional kernel ℎ:

𝑦 𝑘1, 𝑘2 = ℎ 𝑘1, 𝑘2 ∗∗ 𝑥 𝑘1, 𝑘2 =෍

𝑖1

෍

𝑖2

ℎ 𝑖1, 𝑖2 𝑥(𝑘1 − 𝑖1, 𝑘2 − 𝑖2)

• Input x has typically limited region of support (size), e.g. it can be an

image of M1xM2 pixels.

• Convolutional kernel ℎ may have limited or infinite region of support.

Types of 2D Discrete-

Time Systems
• Finite impulse response (FIR):

ℎ(𝑛1, 𝑛2) is zero outside some filter mask (region) 𝑁1 × 𝑁2, 0 ≤ 𝑛1 < 𝑁1,

0 ≤ 𝑛2 < 𝑁2.

• FIR filters are described by a 2D linear convolution with convolutional

kernel ℎ of size 𝑁1 × 𝑁2 is given by:

𝑦 𝑘1, 𝑘2 = ℎ 𝑘1, 𝑘2 ∗∗ 𝑥 𝑘1, 𝑘2 =෍

𝑖1

𝑁1

෍

𝑖2

𝑁2

ℎ 𝑖1, 𝑖2 𝑥(𝑘1 − 𝑖1, 𝑘2 − 𝑖2)

• Usually digital (discrete-time) systems without feedback are FIR.

2D Discrete-Time

System - Examples
• FIR: The moving average filter 𝑁1 × 𝑁2,

Ni=2νi+1:

• 3x3 moving average filter.

𝑦(𝑛1, 𝑛2) =
1

𝑁1𝑁2
σ𝑘1=−𝑣1

𝑣1 σ𝑘2=−𝑣2

𝑣2 𝑥(𝑛1 − 𝑘1, 𝑛2 − 𝑘2)x

2D Discrete-Time System –

Moving Average

Types of 2D Discrete-

Time Systems
• Infinite impulse response (IIR) when ℎ(𝑛1, 𝑛2) has infinite region of

support, e.g., if it never becomes zero outside some finite region.

• IIR filters are described by difference equations

෍

𝑘1

෍

𝑘2

𝑏(𝑘1, 𝑘2)𝑦(𝑛1 − 𝑘1, 𝑛2 − 𝑘2) =෍

𝑟1

෍

𝑟2

𝑎(𝑟1, 𝑟2)𝑥(𝑛1 − 𝑟1, 𝑛2 − 𝑟2)

2D Discrete-Time

System - Examples
• IIR Edge Detector output

2D linear correlation

• Correlation of template image ℎ and input image 𝑥 (inner

product):

𝑟ℎ𝑥 𝑚1, 𝑚2 = ෍

𝑛1=0

𝑁1−1

෍

𝑛2=0

𝑁2−1

ℎ 𝑛1, 𝑛2 𝑥(𝑛1 +𝑚1, 𝑛2 +𝑚2) = 𝒉𝑇𝒙 𝑛1, 𝑛2 .

• 𝒉 = ℎ 0,0 , … , ℎ 𝑁1 − 1,𝑁2 − 1 𝑇: template image vector.

• 𝒙 𝑘 = [𝑥 𝑛1, 𝑛2 , ..., 𝑥 𝑛1 + 𝑁1 − 1, 𝑛2 + 𝑁2 − 1]Τ ∶ local image

vector.

2D linear correlation

Differences from convolution:

• 𝑥 𝑛1, 𝑛2 is not flipped around (0,0).

• It is often confused with convolution: they are identical only

if ℎ is centered at and is symmetric about (0,0).

• It is used for 2D template matching and for object tracking in

video.

Image autocorrelation:

𝑟𝑥𝑥 𝑚1, 𝑚2 = ෍

𝑛1=0

𝑁1−1

෍

𝑛2=0

𝑁2−1

𝑥 𝑛1, 𝑛2 𝑥(𝑛1 +𝑚1, 𝑛2 +𝑚2) .

Linear and cyclic 2D

convolutions

• Two-dimensional linear convolution with convolutional kernel ℎ of size

𝑁1 × 𝑁2 is given by:

𝑦 𝑘1, 𝑘2 = ℎ 𝑘1, 𝑘2 ∗∗ 𝑥 𝑘1, 𝑘2 =෍

𝑖1

𝑁1

෍

𝑖2

𝑁2

ℎ 𝑖1, 𝑖2 𝑥(𝑘1 − 𝑖1, 𝑘2 − 𝑖2)

• Its two-dimensional cyclic convolution counterpart of support 𝑁1 × 𝑁2
is defined as:

𝑦 𝑘1, 𝑘2 = ℎ 𝑘1, 𝑘2 ⊛⊛𝑥 𝑘1, 𝑘2 =෍

𝑖1

𝑁1

෍

𝑖2

𝑁2

ℎ 𝑖1, 𝑖2 𝑥(𝑘1 − 𝑖1 𝑁1 , 𝑘2 − 𝑖2 𝑁2)

2D Convolution -

Example
• With Padding

2D Convolution -

Example
• No Padding

Linear and cyclic 2D

convolutions
• A 2D linear convolution of convolutional kernel ℎ of size 𝑀1 ×𝑀2

operating on an image 𝑥 of size 𝑁1 × 𝑁2 of size produces an output

image 𝑦:

• of size 𝑀1𝑀2using zero padding

• Complexity: 𝑁1𝑁2𝑀1𝑀2 multiplications.

• of size (𝑁1−𝑀1 + 1) (𝑁2 −𝑀2+1), without input image border padding.

• Complexity: (𝑁1−𝑀1 + 1) (𝑁2 −𝑀2+1) 𝑀1𝑀2 multiplications.

• In both cases complexity is 𝑂 𝑁4 , if 𝑁1, 𝑁2, 𝑀1′𝑀2 are of order N.

2D Discrete Fourier

Transform (DFT) - Notation

𝑥(𝑛1, 𝑛2) =
1

𝑁1𝑁2
෍

𝑘1=0

𝑁1−1

෍

𝑘2=0

𝑁2−1

𝑋(𝑘1, 𝑘2)𝑊𝑁1

−𝑛1𝑘1𝑊𝑁2

−𝑛2𝑘2

𝑋(𝑘1, 𝑘2) = ෍

𝑛1=0

𝑁1−1

෍

𝑛2=0

𝑁2−1

𝑥(𝑛1, 𝑛2)𝑊𝑁1

𝑛1𝑘1𝑊𝑁2

𝑛2𝑘2

𝑊𝑁𝑖
= exp −𝑖

2𝜋

𝑁𝑖
, 𝑖 = 1,2

2D Cyclic Convolution

Calculation with DFT

𝑦 𝑘1, 𝑘2 = ℎ 𝑘1, 𝑘2 ⊛⊛𝑥 𝑘1, 𝑘2 =෍

𝑖1

𝑁1

෍

𝑖2

𝑁2

ℎ 𝑖1, 𝑖2 𝑥(𝑘1 − 𝑖1 𝑁1 , 𝑘2 − 𝑖2 𝑁2)

1. Calculate the 2D DFTs of the 2D matrices 𝐡 and 𝐱:
𝐇 = 𝐷𝐹𝑇{𝐡}, 𝐗 = 𝐷𝐹𝑇{𝐱}

2. Multiply 2D matrices matrices 𝐇 and 𝐗 elementwise in the frequency domain:

𝐘 = 𝐇⊙ 𝐗

3. Calculate the IDFT of 𝐘 to get 𝐲:

𝐲 = 𝐼𝐷𝐹𝑇{𝐘}

Linear Convolution with DFT
• We have:
𝑥(𝑛1, 𝑛2) in the region 𝑅𝑃1𝑃2 = [0, 𝑃1) × [0, 𝑃2)

ℎ(𝑛1, 𝑛2) in the region 𝑅𝑄1𝑄2 = [0, 𝑄1) × [0, 𝑄2)

• The linear convolution is in the region
𝑅𝐿1𝐿2 = [0, 𝐿1) × [0, 𝐿2)𝐿𝑖 = 𝑃𝑖 + 𝑄𝑖 − 1, 𝑖 = 1,2

1. We need to pad the signals with 0s, choosing 𝑁1, 𝑁2, 𝑁𝑖 ≥ 𝑃𝑖
+
𝑄𝑖

− 1,
𝑖 = 1,2

𝑥𝑝(𝑛1, 𝑛2) = ൝
𝑥(𝑛1, 𝑛2) (𝑛1, 𝑛2) ∈ 𝑅𝑃1𝑃2

0 (𝑛1, 𝑛2) ∈ 𝑅𝑁1𝑁2 − 𝑅𝑃1𝑃2

ℎ𝑝(𝑛1, 𝑛2) = ൝
ℎ(𝑛1, 𝑛2) (𝑛1, 𝑛2) ∈ 𝑅𝑄1𝑄2

0 (𝑛1, 𝑛2) ∈ 𝑅𝑁1𝑁2 − 𝑅𝑄1𝑄2

Linear Convolution with DFT

2. Compute the DFTs of 𝑥𝑝(𝑛1, 𝑛2) and ℎ𝑝(𝑛1, 𝑛2) that have a length of 𝑁1 × 𝑁2

3. Compute 𝑌𝑝(𝑘1, 𝑘2) as the product of 𝑋𝑝(𝑘1, 𝑘2) and 𝐻𝑝(𝑘1, 𝑘2)

4. Compute 𝑦𝑝(𝑛1, 𝑛2) as the IDFT of 𝑌𝑝(𝑘1, 𝑘2)

5. The result is the region [0, 𝐿1) × [0, 𝐿2) of 𝑦𝑝(𝑛1, 𝑛2).

Row-Column FFT
• Sequential 1D FFTs are computed over rows and columns

𝐺(𝑛1, 𝑘2) = ෍

𝑛2=0

𝑁2−1

𝑥(𝑛1, 𝑛2)𝑊𝑁2

𝑛2𝑘2

𝑋(𝑘1, 𝑘2) = ෍

𝑛1=0

𝑁1−1

𝐺(𝑛1, 𝑘2)𝑊𝑁1

𝑛1𝑘1

• The number of complex multiplications are:

𝐶 = 𝑁1
𝑁2
2
log2𝑁2 +𝑁2

𝑁1
2
log2𝑁1 =

𝑁1𝑁2
2

log2(𝑁1𝑁2)

Which is 𝑂(𝑁2 𝑙𝑜𝑔2𝑁)

Convolutions using FFT

• Memory requirements are x8 for direct computation and x16 using the

FFT.

• Direct approach is faster for a small filter 𝐾1 × 𝐾2when:

𝐾1𝐾2 6log2(𝑁1𝑁2) + 4

• For large filters close to the image size:

Direct has 𝑂(𝑁4)

Using FFT has ~𝑂(𝑁2log2𝑁)

Block-based convolution

calculation
• Block-based methods:

The 2D overlap-add is based on the distributive property of convolution:

• An image 𝑥 𝑖1, 𝑖2 can be divided into 𝐾1 × 𝐾2 non-overlapping subsequences,

having dimensions 𝑁𝐵1 × 𝑁𝐵2, each:

𝑥𝑘1𝑘2(𝑖1, 𝑖2) = ቊ
𝑥 𝑖1, 𝑖2 𝑘1𝑁𝐵1 ≤ 𝑖1 < 𝑘1 + 1 𝑁𝐵1, 𝑘2𝑁𝐵2 ≤ 𝑖2 < 𝑘2 + 1 𝑁𝐵2

0 otherwise

• The linear convolution output 𝑦 𝑛1, 𝑛2 is the sum of the (easily parallelizable)

convolution outputs produced by the input sequence blocks:

𝑦 𝑖1, 𝑖2 = 𝑥 𝑖1, 𝑖2 ∗∗ ℎ 𝑖1, 𝑖2 = ෍

𝑘1=1

𝐾1

෍

𝑘2=1

𝐾2

𝑥𝑘1𝑘2(𝑖1, 𝑖2) ∗∗ ℎ 11, 12 = ෍

𝑘1=1

𝐾1

෍

𝑘2=1

𝐾2

𝑦𝑘1𝑘2(𝑖1, 𝑖2)

Overlap-add

The ‘partial’ convolutions are performed using FFT and then adding

the results:

• The blocks and the filter are transformed to the frequency domain.

• Partial output blocks are calculated using the IFFT of the product as

usual.

• Then all the overlapping blocks are added to construct the final output

image.

Overlap-save
• Block-based methods:

The 2D overlap-save convolution:

• The output is divided into non overlapping boxes of size 𝑁1 × 𝑁2

𝑦 𝑛1𝑛2 =෍

𝑖=1

𝐾1

෍

𝑗=1

𝐾2

𝑦𝑖𝑗(𝑛1𝑛2)

• To calculate 𝑦𝑖𝑗(𝑛1, 𝑛2):
– Extension of 𝑥𝑖𝑗(𝑛1, 𝑛2) of size 𝑁1 × 𝑁2 to 𝑥’𝑖𝑗(𝑛1, 𝑛2) of size (𝑁1+𝑀1− 1) × (𝑁2+𝑀2− 1).

– Calculation of the Cyclic convolution between 𝑥’𝑖𝑗 and ℎ with a DFT of size

(𝑁1+𝑀1− 1) × (𝑁2+𝑀2− 1).

– Every 𝑥𝑖𝑗 item is non zero, therefore only the inner 𝑁1 × 𝑁2 is correct.

– Addition all the ‘trimmed’ boxes to get the output.

Overlap-save

Convolutional Neural Networks

• Two step architecture:

• First layers with sparse NN connections: convolutions.

• Fully connected final layers.

• Need for fast convolution calculations.

Convergence of machine learning and signal
processing processing

Convolutional Neural Networks

• The convolution kernel is given by the 4D tensor:

𝑾 = [𝑤𝑘1,𝑘2,𝑟,𝑜: 𝑘1= 1, . . . , ℎ1 , 𝑘2 = 1,… , ℎ2,

𝑟 = 1,… , 𝑑𝑖𝑛 , 𝑜 = 1,… , 𝑑𝑜𝑢𝑡]:𝑾 ∈ ℝℎ1×ℎ2×𝑑𝑖𝑛×𝑑𝑜𝑢𝑡.

• For specific 𝑟, 𝑜, the ℎ1 × ℎ2 convolution filters

𝑾(𝑟, 𝑜) contain the synaptic weights for the ℎ1 × ℎ2
neuron receptive field.

Characteristics: Local Receptive Fields

Convolutional Layer

• For a convolutional layer 𝑙 with an activation function 𝑓𝑙(∙) ,

multiple incoming features 𝑑𝑖𝑛 and one single output feature 𝑜.

For RGB images

Multiple input features to single feature 𝒐 transformation

𝑦 𝑙 (𝑖, 𝑗, 𝑜) = 𝑓𝑙 𝑏(𝑙) +෍

𝑟=1

𝑑𝑖𝑛

෍

𝑘1=−𝑞1

𝑞1
(𝑙)

෍

𝑘2=−𝑞2

𝑞2
(𝑙)

𝑤(𝑙) 𝑘1, 𝑘2, 𝑟, 𝑜 𝑥(𝑙) 𝑖 − 𝑘1, 𝑗 − 𝑘2, 𝑟

Convolutional Layer Activation Volume (3D tensor)

𝑎𝑖𝑗
𝑙
(𝑜) = 𝑓𝑙 𝑏 𝑙 (𝑜) +෍

𝑟=1

𝑑𝑖𝑛

𝑾 𝑙 (𝑟, 𝑜) ∗ 𝑿𝑖𝑗
𝑙
(𝑟) 𝑨 𝑙 = 𝑎𝑖𝑗

𝑙
𝑜 : 𝑖 = 1, . . , 𝑛 𝑙 , 𝑗 = 1, . . , 𝑚 𝑙 , 𝑜 = 1,… , 𝑑𝑜𝑢𝑡

where𝑨 𝑙 is the activation volume for the convolutional layer 𝑙,𝑾 𝑙 (𝑟, 𝑜) is a 2D slice of the convolutional kernel

𝑾(𝑙) ∈ ℝℎ1×ℎ2×𝑑𝑖𝑛×𝑑𝑜𝑢𝑡 for input feature 𝑟 and output feature 𝑜 , 𝑏 𝑙 (𝑜) a scalar bias and

𝑿𝑖𝑗
𝑙
(𝑟)a region of input feature 𝑟 centered at 𝑖, 𝑗 𝑇, e.g. 𝑿 1 (1) the R channel of an image 𝑑𝑖𝑛 = 𝐶 = 3.

Deep Learning Frameworks

Image Source: Heehoon Kim, Hyoungwook Nam, Wookeun Jung, and Jaejin Le - Performance Analysis of CNN Frameworks for GPUs

Deep Learning Frameworks
• All 5 frameworks work with cuDNN as backend.

• cuDNN unfortunately not open source

• cuDNN supports FFT and Winograd

Image Source: Heehoon Kim, Hyoungwook Nam, Wookeun Jung, and Jaejin Le - Performance Analysis of CNN Frameworks for GPUs

Q & A

Thank you very much for your attention!

Contact: Prof. I. Pitas

pitas@csd.auth.gr

